

Supporting Information

for

Mild and efficient synthesis and base-promoted rearrangement of novel isoxazolo[4,5-*b*]pyridines

Vladislav V. Nikol'skiy, Mikhail E. Minyaev, Maxim A. Bastrakov and Alexey M. Starosotnikov

Beilstein J. Org. Chem. 2024, 20, 1069–1075. doi:10.3762/bjoc.20.94

Experimental section, NMR spectra and X-ray analysis data

License and Terms: This is a supporting information file under the terms of the Creative Commons Attribution License (https://creativecommons.org/ licenses/by/4.0). Please note that the reuse, redistribution and reproduction in particular requires that the author(s) and source are credited and that individual graphics may be subject to special legal provisions.

Experimental

All chemicals were of commercial grade and used directly without purification. Melting points were measured on a Stuart SMP20 apparatus (Stuart (Bibby Scientific), Stone, UK). ¹H and ¹³C NMR spectra were recorded on a Bruker AM-300 (at 300.13 and 75.13 MHz, respectively, Bruker Biospin, Ettlingen, Germany) or a Bruker Avance DRX 500 (at 500 and 125 MHz, respectively, Bruker Biospin, Germany) in DMSO- d_6 or CDCl₃. *J* values are given in Hz. HRMS spectra were recorded on a Bruker micrOTOF II mass spectrometer using ESI. All reactions were monitored by TLC analysis using Merck TLC Silica gel 60 F₂₅₄ plates, which were visualized with UV light. Compounds **1a–c** were purchased from commercial suppliers.

Synthesis of compounds 3a-c (general procedure):

To a stirred suspension of NaH (60% in mineral oil, 0.32 g, 8 mmol) in anhydrous THF (15 mL) ethyl acetoacetate (0.52 g, 4 mmol) was added dropwise. After 15 minutes of stirring, an appropriate 2-chloro-3-nitropyridine **1** (4 mmol) was added portion-wise. The reaction mixture was refluxed for 1–6 h (monitored with TLC), poured into 1 M aqueous HCl (75 mL) and extracted with CHCl₃. The extract was evaporated under reduced pressure and the residue was dissolved in 15 mL of ethanol. Freshly prepared isopropyl nitrite was added (1.2 mL, 12 mmol) followed by TsOH·H₂O (0.76 g, 4 mmol). The reaction mixture was stirred at rt overnight, diluted with ethyl acetate, washed with brine, and evaporated under reduced pressure. The crude product was purified by flash-chromatography on SiO₂ with 10% ethyl acetate in CHCl₃ as an eluent.

Ethyl (3,5-dinitropyridin-2-yl)(hydroxyimino)acetate (3a)

Yellow oil; yield 76%; ¹H NMR (300 MHz, CDCl₃): δ 1.26 (t, 3H, *J* = 7.2 Hz), 4.31 (q, 2H, *J* = 7.2 Hz), 9.21 (d, 1H, *J* = 1.8 Hz), 9.47 (br.s., 1H), 9.68 (d, 1H, *J* = 2.1 Hz); ¹³C NMR (75 MHz, CDCl₃): δ 13.9, 63.2, 128.2, 143.8, 144.3, 145.8, 148.4, 149.9, 161.0. HRMS (ESI, m/z): calcd for C₉H₈N₄O₇ [M + H]⁺: 285.0466; found: 285.0471.

Ethyl (hydroxyimino)[3-nitro-5-(trifluoromethyl)pyridin-2-yl]acetate (3b)

NO₂ F₃C COOEt ŇOH

White crystals; yield 60%; mp 110-113 °C; ¹H NMR (300 MHz, CDCl₃): δ 1.33 (t, 3H, J = 7.1 Hz), 4.38 (q, 2H, J = 7.1 Hz), 8.79 (d, 1H, J = 1.6 Hz), 9.24 (d, 1H, J = 1.0 Hz), 9.77 (s, 1H). ¹³C NMR (75 MHz, CDCl₃): δ 13.9, 63.0, 121.9 (q, ¹J_{CF} = 273.7 Hz), 128.2 (q, ²J_{CF} = 35.5 Hz), 130.3 (d, ³J_{CF} = 3.6 Hz), 144.2, 146.2, 148.2, 150.4 (d, ³J_{CF} = 3.6 Hz), 161.1. HRMS (ESI, m/z): calcd for C₁₀H₈F₃N₃NaO₅ [M + Na]⁺: 330.0308; found: 330.0310.

Ethyl (hydroxyimino)(5-chloro-3-nitropyridin-2-yl)acetate (3c)

Colorless oil; yield 71%; ¹H NMR (300 MHz, CDCl₃): δ 1.33 (t, 3H, *J* = 7.1 Hz), 4.37 (q, 2H, *J* = 7.1 Hz), 8.55 (d, 1H, *J* = 2.0 Hz), 8.94 (d, 1H, *J* = 2.0 Hz), 9.70 (br.s, 1H). ¹³C NMR (75 MHz, CDCl₃): δ 14.0, 62.7, 132.2, 133.2, 142.8, 144.4, 146.6, 152.9, 161.3. HRMS (ESI, m/z): calcd for C₉H₈ClN₃O₅ [M + H]⁺: 274.0225; found: 274.0233.

Synthesis of compounds 6a-c (general procedure):

To a stirred suspension of NaH (60% in mineral oil, 3.20 g, 80 mmol) in anhydrous THF (160 mL) ethyl acetoacetate (5.20 g, 40 mmol) was added dropwise. After 15 minutes, an appropriate 2-chloro-3-nitropyridine (40 mmol) was added portion-wise. The reaction mixture was refluxed for 1–6 h (monitored with TLC), cooled to room temperature, and acidified with 200 mL of 15% hydrochloric acid. Most of the THF was removed under reduced pressure and the aqueous residue was refluxed for 1–2 h, cooled to rt, and extracted with CHCl₃. The combined extracts were evaporated under reduced pressure, the crude 2-methyl-3-nitropyridine **5** was dissolved in DMF (20 mL) and DMF-DMA (10 mL, 75 mmol) was added. The red solution was stirred at 80 °C for 1 h, cooled, and diluted with water. The precipitate was filtered off and recrystallized from isopropanol.

(*E*)-2-(3,5-Dinitropyridin-2-yl)-*N*,*N*-dimethylethylenamine (6a)

Red crystals; yield 89%; mp 195-196 °C; ¹H NMR (300 MHz, CDCl₃): δ 3.10 (s, 3H), 3.33 (s, 3H), 6.41 (d, 1H, J = 12.0 Hz), 8.44 (d, 1H, J = 12.0 Hz), 8.97 (s, 1H), 9.10 (s, 1H). ¹³C NMR (125.76 MHz, DMSO-d₆): δ 37.6, 45.9, 92.2, 130.3, 134.8, 146.8, 155.1, 156.2. HRMS (ESI, m/z): calcd for C₉H₁₀N₄O₄ [M + H]⁺: 239.0775; found: 239.0780.

(E)-N,N-Dimethyl-2-[3-nitro-5-(trifluoromethyl)pyridin-2-yl]ethylenamine (6b)

Red crystals; yield 65%; mp 89-90 °C; ¹H NMR (300 MHz, CDCl₃): δ 3.03 (br.s, 6H), 6.19 (d, 2H, J = 12.3 Hz), 8.18 (d, 2H, J = 12.3 Hz), 8.34 (s, 1H), 8.49 (s, 1H). ¹³C NMR (75.47 MHz, CDCl₃): δ 37.3, 45.3, 91.4, 117.5 (q, ² $J_{CF} = 33.8$ Hz), 123.3 (q, ¹ $J_{CF} = 269.5$ Hz), 131.7 (q, ³ $J_{CF} = 3.8$ Hz), 136.1, 149.1 (q, ³ $J_{CF} = 3.5$ Hz), 153.1, 155.8. HRMS (ESI, m/z): calcd for C₁₀H₁₀F₃N₃O₂ [M + H]⁺: 262.0798; found: 262.0804.

(*E*)-*N*,*N*-Dimethyl-2-(5-chloro-3-nitropyridin-2-yl)ethylenamine (6c)

Red crystals; yield 56%; mp 124-125 °C; ¹H NMR (300 MHz, CDCl₃): δ 3.08 (br.s, 6H), 6.18 (d, 1H, J = 12.4 Hz), 8.07 (d, 1H, J = 12.4 Hz), 8.22 (s, 1H), 8.36 (s, 1H). ¹³C NMR (75.47 MHz, CDCl₃): δ 25.4, 90.7, 121.8, 133.1, 137.4, 151.1, 151.6. HRMS (ESI, m/z): calcd for C₉H₁₀ClN₃O₂ [M + H]⁺: 228.0534; found: 228.0537.

Synthesis of compounds 7a-c (general procedure):

A solution of NaNO₂ (3.80 g, 55 mmol) in H₂O (15 mL) was added dropwise to a solution of substituted enamine **6** (25 mmol) in conc. HCl (40 mL) with vigorous stirring. The temperature was kept near rt during the addition. The reaction mixture was stirred for additional 15 minutes, diluted with water, and extracted with CHCl₃. The combined extracts were washed several times with water, dried over anhydrous Na₂SO₄, and evaporated under reduced pressure. The crude product was purified by flash-chromatography on SiO₂ with 10% ethyl acetate in CHCl₃ as an eluent.

(3,5-Dinitropyridin-2-yl)(hydroxyimino)acetaldehyde (7a)

Yellow oil; yield 55%; ¹H NMR (300 MHz, DMSO-d₆): δ 9.21 (d, 1H, J = 2.0 Hz), 9.79 (d, 1H, J = 2.0 Hz), 9.85 (s, 1H), 13.96 (s, 1H). ¹³C NMR (125.76 MHz, DMSO-d₆): δ 128.8, 144.1, 145.1, 147.3, 148.7, 153.1, 189.2.

(Hydroxyimino)[3-nitro-5-(trifluoromethyl)pyridin-2-yl]acetaldehyde (7b)

Yellow crystals; yield 70%; mp 105-108 °C; ¹H NMR (300 MHz, CDCl₃): δ 8.72 (s, 1H), 9.16 (s, 1H), 9.66 (s, 1H), 9.72 (s, 1H). ¹³C NMR (125.76 MHz, CDCl₃): δ 121.7 (q, ¹*J*_{CF} = 273.8 Hz), 128.5 (q, ²*J*_{CF} = 35.3 Hz), 130.4 (d, ³*J*_{CF} = 3.4 Hz), 144.8, 146.8, 150.3 (d, ³*J*_{CF} = 3.5 Hz), 154.0, 187.6. HRMS (ESI, m/z): calcd for C₈H₄F₃N₃O₄ [M + H]⁺: 264.0227; found: 264.0224.

Hydroxyimino(5-chloro-3-nitropyridin-2-yl)acetaldehyde (7c)

White solid; yield 66%; mp 179-180 °C with dec.; ¹H NMR (300 MHz, DMSO-d₆): δ 8.85 (s, 1H), 9.16 (s, 1H), 9.80 (s, 1H), 13.74 (s, 1H). ¹³C NMR (75.47 MHz, DMSO-d₆): δ 132.2, 132.7, 141.1, 145.4, 153.0, 153.4, 189.4. HRMS (ESI, m/z): calcd for C₇H₄ClN₃O₄ [M + H]⁺: 229.9963; found: 229.9967.

Synthesis of compounds 9a-c (general procedure):

An appropriate aldehyde (2mmol) was dissolved in benzene (30 mL) and ethylene glycol (0.5 mL) and a catalytic amount of $TsOH \cdot H_2O$ were added. The reaction mixture was refluxed for 2 h with a Dean–Stark adapter (monitored with TLC), washed with water, dried over anhydrous Na₂SO₄, and evaporated under reduced pressure.

(3,5-Dinitropyridin-2-yl)(1,3-dioxolan-2-yl)methanone oxime (9a)

Off-white crystals; yield 85%; mp 152-153 °C; ¹H NMR (300 MHz, DMSO-d₆): δ 3.72-3.92 (m, 4H), 5.82 (s, 1H), 9.13 (d, 1H, J = 1.9 Hz), 9.73 (d, 1H, J = 1.9 Hz), 12.15 (s, 1H). ¹³C NMR

 $(125.76 \text{ MHz}, \text{DMSO-d}_6)$: δ 64.9, 101.3, 128.3, 143.6, 145.3, 147.9, 149.2, 149.4. HRMS (ESI, m/z): calcd for C₉H₈N₄O₇ [M + H]⁺: 285.0466; found: 285.0465.

1,3-Dioxolan-2-yl[3-nitro-5-(trifluoromethyl)pyridin-2-yl]methanone oxime (9b)

White solid; yield 86%; mp 82-83 °C; ¹H NMR (300 MHz, CDCl₃): δ 4.01 (s, 4H), 6.08 (s, 1H), 8.65 (s, 1H), 8.88 (s, 1H), 9.20 (s, 1H). ¹³C NMR (75.47 MHz, CDCl₃): δ 65.3, 101.0, 122.0 (q, ¹*J*_{CF} = 271.7 Hz), 127.4 (q, ²*J*_{CF} = 34.7 Hz), 129.7 (q, ³*J*_{CF} = 3.5 Hz), 145.4, 148.7, 149.8 (q, ³*J*_{CF} = 3.6 Hz), 150.6. HRMS (ESI, m/z): calcd for C₁₀H₈F₃N₃O₅ [M + H]⁺: 308.0489; found: 308.0488.

(5-Chloro-3-nitropyridin-2-yl)(1,3-dioxolan-2-yl)methanone oxime (9c)

White crystals; yield 91%; mp 181-182 °C; ¹H NMR (300 MHz, DMSO-d₆): δ 3.72-3.88 (m, 4H), 5.77 (s, 1H), 8.74 (s, 1H), 9.08 (s, 1H), 11.92 (s, 1H). ¹³C NMR (125.76 MHz, DMSO-d₆): δ 64.9, 101.3, 131.4, 132.3, 143.0, 145.8, 149.3, 152.2. HRMS (ESI, m/z): calcd for C₉H₈ClN₃O₅ [M + H]⁺: 274.0225; found: 274.0235.

Synthesis of compounds 4a-c and 10a-c (general procedure):

To a solution of compound **3** or **9** (1 mmol) in dry MeCN (3 mL) was added finely powdered anhydrous K_2CO_3 (0.138 g, 1 mmol) and the mixture was stirred at rt for 1–12 h (monitored with TLC), then poured into water (15 mL), and acidified with conc. HCl to pH 3. The precipitate was filtered off, washed with water, and air-dried.

Ethyl 6-nitroisoxazolo[4,5-b]pyridine-3-carboxylate (4a)

White crystals; yield 91%; mp 83-84 °C; ¹H NMR (300 MHz, CDCl₃): δ 1.45 (t, 3H, *J* = 7.0 Hz), 4.56 (q, 2H, *J* = 7.1 Hz), 8.77 (s, 1H), 9.63 (1H). ¹³C NMR (75.47 MHz, CDCl₃): δ 14.2, 63.4,

114.2, 142.5, 143.8, 145.0, 151.1, 155.7, 157.8. HRMS (ESI, m/z): calcd for C₉H₇N₃NaO₅ [M + Na]⁺: 260.0278; found: 260.0283.

Ethyl 6-(trifluoromethyl)isoxazolo[4,5-*b*]pyridine-3-carboxylate (4b)

White crystals; yield 93%; mp 87-89 °C; ¹H NMR (300 MHz, CDCl₃): δ 1.45 (t, 3H, *J* = 7.0 Hz), 4.46 (q, 2H, *J* = 7.1 Hz), 8.24 (s, 1H), 9.08 (s, 1H). ¹³C NMR (125.76 MHz, CDCl₃): δ 14.1, 63.2, 115.9 (q, ³*J*_{CF} = 4.0 Hz), 122.8 (q, ¹*J*_{CF} = 273.7 Hz), 127.1 (q, ²*J*_{CF} = 33.7 Hz), 141.1, 146.5 (d, ³*J*_{CF} = 3.4 Hz), 150.9, 155.8, 158.2. HRMS (ESI, m/z): calcd for C₁₀H₇F₃N₂NaO₃ [M + Na]⁺: 283.0301; found: 283.0302.

Ethyl 6-chloroisoxazolo[4,5-*b*]pyridine-3-carboxylate (4c)

Off-white solid; yield 95%; mp 89-90 °C; ¹H NMR (300 MHz, CDCl₃): δ 1.51 (t, 3H, J = 7.1 Hz), 4.62 (q, 2H, J = 7.1 Hz), 8.05 (d, 1H, J = 1.4 Hz), 8.83 (d, 1H, J = 1.4 Hz). ¹³C NMR (75.47 MHz, CDCl₃): δ 14.2, 63.0, 117.9, 133.5, 136.7, 149.4, 150.7, 157.1, 158.5. HRMS (ESI, m/z): calcd for C₉H₇ClN₂O₃ [M + Na]⁺: 227.0218; found: 227.0215.

3-(1,3-Dioxolan-2-yl)-6-nitroisoxazolo[4,5-b]pyridine (10a)

White crystals; yield 88%; mp 70-72 °C; ¹H NMR (300 MHz, DMSO-d₆): δ 4.11-4.36 (m, 4H), 6.55 (s, 1H), 9.31 (d, 1H, J = 1.7Hz), 9.60 (d, 1H, J = 1.7 Hz). ¹³C NMR (125.76 MHz, DMSO-d₆): δ 65.8, 96.3, 115.4, 141.6, 144.0, 144.4, 155.2, 157.5. HRMS (ESI, m/z): calcd for C₉H₇N₃NaO₅ [M + Na]⁺: 260.0278; found: 260.0270.

3-(1,**3**-Dioxolan-2-yl)-6-(trifluoromethyl)isoxazolo[4,**5**-*b*]pyridine (10b)

Amber oil; yield 92%; ¹H NMR (300 MHz, CDCl₃): δ 4.17-4.28 (m, 2H), 4.41-4.49 (m, 2H), 6.56 (s, 1H), 8.21 (s, 1H), 9.02 (s, 1H) . ¹³C NMR (75.47 MHz, CDCl₃): δ 66.3, 97.2, 115.4 (q, ³*J*_{CF} = 4.1 Hz), 123.1 (q, ¹*J*_{CF} = 271.7 Hz), 126.8 (q, ²*J*_{CF} = 33.2 Hz), 141.6, 145.1 (q, ³*J*_{CF} = 3.6 Hz), 155.1, 157.5. HRMS (ESI, m/z): calcd for C₁₀H₇F₃N₂O₅ [M + H]⁺: 261.0482; found: 261.0484.

6-Chloro-3-(1,3-dioxolan-2-yl)isoxazolo[4,5-b]pyridine (10c)

White solid; yield 84%; mp 75-76 °C; ¹H NMR (300 MHz, CDCl₃): δ 4.15-4.26 (m, 2H), 4.38-4.48 (m, 2H), 6.50 (s, 1H), 7.95 (s, 1H), 8.70 (s, 1H) . ¹³C NMR (125.76 MHz, CDCl₃): δ 66.1, 97.2, 117.4, 133.0, 137.0, 147.8, 156.4, 157.1. HRMS (ESI, m/z): calcd for C₉H₇ClN₂O₃ [M + H]⁺: 227.0218; found: 227.0223.

Synthesis of compounds 8b,c (general procedure):

A solution of compound 7 (1 mmol) in MeCN (3 mL) was stirred with powdered anhydrous K_2CO_3 (0.138 g, 1 mmol) at rt overnight, then poured into 1 M HCl (15 mL), and extracted with CHCl₃. The extract was dried over anhydrous Na₂SO₄ and evaporated under reduced pressure.

3-Hydroxy-5-(trifluoromethyl)pyridine-2-carbonitrile (8b)

Off-white solid; yield 62%; mp 115-116 °C; ¹H NMR (300 MHz, DMSO-d₆): δ 7.69 (s, 1H), 8.55 (s, 1H), 12.50 (br.s, 1H). ¹³C NMR (125.76 MHz, DMSO-d₆): δ 115.0, 121.4 (d, ³*J*_{CF} = 3.7 Hz), 122.5 (q, ¹*J*_{CF} = 273.7 Hz), 124.3, 129.0 (q, ²*J*_{CF} = 32.8 Hz), 137.7 (d, ³*J*_{CF} = 3.6 Hz), 157.5. HRMS (ESI, m/z): calcd for C₇H₃F₃N₂O [M + H]⁺: 189.0270; found: 189.0270. IR (KBr): v 768, 902, 951, 1084, 1141, 1169, 1243, 1267, 1328, 1355, 1456, 1607, 1694, 2246 (CN), 2563, 2612, 2786, 2890, 3017, 3088, 3115 cm⁻¹.

5-Chloro-3-hydroxypyridine-2-carbonitrile (8c)

Off-white solid; yield 65%; mp 193-195 °C with dec.; ¹H NMR (300 MHz, DMSO-d₆): δ 7.53 (s, 1H), 8.26 (s, 1H), 12.31 (br.s., 1H). ¹³C NMR (75.47 MHz, DMSO-d₆): δ 115.9, 119.6, 124.5, 135.8, 141.1, 158.5. MS (EI): m/z 154 [M]⁺. IR (KBr): v 607, 748, 885, 949, 1097, 1155, 1220, 1298, 1428, 1565, 1724, 2234 (CN), 2472, 2541, 2751, 2856, 2929, 2958, 3073, 3434 cm⁻¹.

Synthesis of compounds 12a-h (general procedure):

A solution of compound **7** (2 mmol) and arylhydrazine hydrochloride or 2,4dinitrophenylhydrazine (2 mmol) in 10 mL of MeOH was stirred under reflux for 1–2 h (monitored with TLC) and cooled to rt. Powdered K_2CO_3 (0.552 g, 4 mmol (0.276 g, 2 mmol, in case of 2,4-dinitrophenylhydrazine)) was added and the reaction mixture was stirred overnight at rt, poured into water (50 mL), and acidified with conc. HCl to pH 3. The precipitate was filtered off and recrystallized from EtOH.

6-Nitroisoxazolo[4,5-*b*]pyridine-3-carbaldehyde phenylhydrazone (12a)

Not isolated. ¹H NMR (300 MHz, DMSO-d₆): δ 6.93 (t, 1H, J = 7.1 Hz), 7.24 (d, 2H, J = 7.9 Hz), 7.34 (t, 2H, J = 7.5 Hz), 8.21 (s, 1H), 9.23 (d, 1H, J = 1.8 Hz), 9.62 (d, 1H, J = 1.8 Hz), 11.32 (s, 1H).

6-Nitroisoxazolo[4,5-b]pyridine-3-carbaldehyde 2,4-dinitrophenylhydrazone (12b)

Brown solid; yield 87%; mp 251 °C with dec.; ¹H NMR (300 MHz, DMSO-d₆): δ 8.24 (d, 1H, *J* = 9.3 Hz), 8.55 (d, 1H, *J* = 9.3 Hz), 8.90 (s, 1H), 9.16 (s, 1H), 9.36 (s, 1H), 9.66 (s, 1H), 12.22 (br.s, 1H). HRMS (ESI, m/z): calcd for C₁₃H₇N₇NaO₇ [M + Na]⁺: 396.0299; found: 396.0293.

6-Trifluoromethylisoxazolo[4,5-b]pyridine-3-carbaldehyde phenylhydrazone (12c)

Yellow crystals; yield 85%; mp 205-206 °C; ¹H NMR (300 MHz, DMSO-d₆): δ 6.91 (t, 1H, J = 7.1 Hz), 7.24 (d, 2H, J = 7.9 Hz), 7.33 (t, 2H, J = 7.8 Hz), 8.21 (s, 1H), 8.88 (s, 1H), 9.25 (s, 1H), 11.28 (s, 1H). ¹³C NMR (75.47 MHz, DMSO-d₆): δ 113.3, 117.0 (q, ³ J_{CF} = 4.0 Hz), 121.1, 122.9, 123.9 (q, ¹ J_{CF} = 271.1 Hz), 125.7 (q, ² J_{CF} = 32.4 Hz), 129.7, 142.5, 144.4, 145.5 (q, ³ J_{CF} = 3.5 Hz), 155.1, 155.2. HRMS (ESI, m/z): calcd for C₁₄H₉F₃N₄O [M + H]⁺: 307.0801; found: 307.0802.

6-Trifluoromethylisoxazolo[4,5-b]pyridine-3-carbaldehyde 2-chlorophenylhydrazone (12d)

Yellow solid; yield 82%; mp 195-197 °C; ¹H NMR (300 MHz, DMSO-d₆): δ 7.60-7.69 (m, 3H), 7.79-7.83 (m, 2H), 8.56 (s, 1H), 8.68 (s, 1H), 11.41 (br.s, 1H). ¹³C NMR (125.76 MHz, DMSO-d₆): δ 120.1 (d, ³*J*_{CF} = 4.0 Hz), 123.4 (q, ¹*J*_{CF} = 272.9 Hz), 125.4 (d, ²*J*_{CF} = 32.1 Hz), 128.3, 128.4, 128.6, 130.9, 131.5, 136.5 (d, ³*J*_{CF} = 4.3 Hz), 136.9, 137.5, 140.1, 145.5, 151.6. HRMS (ESI, m/z): calcd for C₁₄H₈ClF₃N₄O [M + H]⁺: 341.0411; found: 341.0410.

6-Trifluoromethylisoxazolo[4,5-*b*]pyridine-3-carbaldehyde 2,4-dinitrophenylhydrazone (12e)

Yellow solid; yield 71%; mp 242-243 °C; ¹H NMR (300 MHz, DMSO-d₆): δ 8.17 (d, 1H, *J* = 9.5 Hz), 8.46 (d, 1H, *J* = 9.2 Hz), 8.82 (s, 1H), 8.99 (s, 1H), 9.10 (s, 1H), 9.24 (s, 1H), 12.15 (br.s, 1H). HRMS (ESI, m/z): calcd for C₁₄H₇F₃N₆O₅ [M - H]⁺: 395.0357; found: 395.0350.

6-Chloroisoxazolo[4,5-b]pyridine-3-carbaldehyde phenylhydrazone (12f)

Yellow crystals; yield 79%; mp 214-215 °C; ¹H NMR (300 MHz, DMSO-d₆): δ 6.90 (t, 1H, J = 6.7 Hz), 7.0-7.35 (m, 4H), 8.16 (s, 1H), 8.60 (s, 1H), 8.90 (s, 1H), 11.24 (s, 1H). ¹³C NMR (75.47 MHz, DMSO-d₆): δ 113.3, 118.6, 121.0, 123.2, 129.7, 132.5, 137.9, 144.5, 148.0, 154.9, 156.3. HRMS (ESI, m/z): calcd for C₁₃H₉ClN₄O [M + H]⁺: 273.0538; found: 273.0544.

6-Chloroisoxazolo[4,5-b]pyridine-3-carbaldehyde 4-methylphenylhydrazone (12g)

Orange crystals; yield 76%; mp 213-214 °C; ¹H NMR (300 MHz, DMSO-d₆): δ 2.26 (s, 3H), 7.12 (s, 4H), 8.12 (s, 1H), 8.59 (s, 1H), 8.89 (s, 1H), 11.15 (s, 1H). ¹³C NMR (125.76 MHz, DMSO-d₆): δ 20.4, 112.8, 118.2, 121.9, 129.3, 129.7, 132.0, 137.5, 141.7, 147.6, 154.5, 155.8. HRMS (ESI, m/z): calcd for C₁₄H₁₁ClN₄O [M + H]⁺: 287.0694; found: 287.0699.

6-Chloroisoxazolo[4,5-b]pyridine-3-carbaldehyde 2,4-dinitrophenylhydrazone (12h)

Yellow solid; yield 74%; mp 245-247 °C; ¹H NMR (300 MHz, DMSO-d₆): δ 8.21 (d, 1H, J = 9.6 Hz), 8.53 (dd, 1H, J = 9.5 Hz, J = 2.4 Hz), 8.72 (d, 1H, J = 1.8 Hz), 8.90 (d, 1H, J = 2.4 Hz), 8.95 (d, 1H, J = 2.1 Hz), 9.11 (s, 1H), 12.16 (br.s., 1H). HRMS (ESI, m/z): calcd for C₁₃H₇ClN₆O₅ [M + H]⁺: 363.0239; found: 363.0239.

Synthesis of compounds 13a,c,d,f,g (general procedure):

To a solution of hydrazone **12** (1 mmol) in anhydrous DMF (3 mL) was added powdered anhydrous K_2CO_3 (0.138 g, 1 mmol) and the mixture was stirred for 1–3 h at 60 °C (monitored with TLC). Then, it was poured into water (15 mL) and acidified with conc. HCl to pH 3. The precipitate was filtered off, washed with water, and air-dried.

5-Nitro-2-(2-phenyl-2H-1,2,3-triazol-4-yl)pyridin-3-ol (13a)

Beige solid; yield 92%; mp 253-255 °C; ¹H NMR (300 MHz, DMSO-d₆): δ 7.50 (t, 1H, J = 7.4 Hz), 7.63 (t, 2H, J = 7.5 Hz), 8.10-8.15 (m, 3H), 8.71 (s, 1H), 9.02 (d, 1H, J = 1.4 Hz), 11.76 (s, 1H). ¹³C NMR (125.76 MHz, CDCl₃): δ 117.9, 118.8, 128.4, 129.9, 135.2, 137.6, 139.1, 141.6, 143.7, 145.1, 151.8. HRMS (ESI, m/z): calcd for C₁₃H₉N₅O₃ [M + H]⁺: 274.0778; found: 274.0786.

5-Trifluoromethyl-2-(2-phenyl-2*H*-1,2,3-triazol-4-yl)pyridin-3-ol (13c)

Beige solid; yield 95%; mp 140-141 °C; ¹H NMR (300 MHz, CDCl₃): δ 7.47 (t, 1H, *J* = 7.4 Hz), 7.58 (t, 2H, *J* = 7.5 Hz), 7.66 (s, 1H), 8.10 (d, 2H, *J* = 7.9 Hz), 8.54 (s, 1H), 8.57 (s, 1H), 9.76 (s, 1H). ¹³C NMR (125.76 MHz, CDCl₃): δ 118.9, 121.6 (d, ³*J*_{CF} = 3.5 Hz), 123.1 (q, ¹*J*_{CF} = 273.0 Hz), 127.3 (q, ²*J*_{CF} = 33.1 Hz), 128.4, 129.6, 134.9, 136.9, 137.7 (d, ³*J*_{CF} = 4.0 Hz), 138.8, 147.8, 151.3. HRMS (ESI, m/z): calcd for C₁₄H₉F₃N₄O [M + H]⁺: 307.0801; found: 307.0797.

5-Trifluoromethyl-2-(2-(2-chlorophenyl)-2H-1,2,3-triazol-4-yl)pyridin-3-ol (13d)

Beige solid; yield 91%; mp 152-154 °C; ¹H NMR (300 MHz, CDCl₃): δ 7.49-7.52 (m, 2H), 7.64-7.68 (m, 2H), 7.75 -7.78 (m, 1H), 8.54 (s, 1H), 8.62 (s, 1H), 9.74 (s, 1H). ¹³C NMR (125.76 MHz, CDCl₃): δ 121.9, 123.0 (q, ¹*J*_{CF} = 272.8 Hz), 127.1, 127.5 (q, ²*J*_{CF} = 33.1 Hz), 127.7, 128.8, 130.7, 131.4, 135.1, 136.6, 136.9, 137.3 (d, ³*J*_{CF} = 3.7 Hz), 147.5, 151.7. HRMS (ESI, m/z): calcd for C₁₄H₈ClF₃N₄O [M + H]⁺: 341.0411; found: 341.0415.

5-Chloro-2-(2-phenyl-2H-1,2,3-triazol-4-yl)pyridin-3-ol (13f)

Beige solid; yield 90%; mp 153-154 °C; ¹H NMR (300 MHz, DMSO-d₆): δ 7.44-7.52 (m, 2H,), 7.61 (t, 2H, *J* = 7.5 Hz), 8.11 (d, 2H, *J* = 7.8 Hz), 8.27 (s, 1H), 8.55 (s, 1H), 11.16 (s, 1H). ¹³C NMR (150.90 MHz, DMSO-d₆): δ 118.6, 123.1, 128.0, 129.8, 130.6, 134.9, 136.5, 138.8, 139.1, 145.8, 152.3. HRMS (ESI, m/z): calcd for C₁₃H₉ClN₄O [M + H]⁺: 273.0538; found: 273.0550.

5-Chloro-2-(2-(4-methylphenyl)-2H-1,2,3-triazol-4-yl)pyridin-3-ol (13g)

Beige solid; yield 95%; mp 171-172 °C; ¹H NMR (300 MHz, DMSO-d₆): δ 2.39 (s, 3H), 7.40 (d, 2H, J = 7.9 Hz), 7.49 (s, 1H), 7.99 (d, 2H, J = 7.9 Hz), 8.26 (s, 1H), 8.52 (s, 1H), 11.10 (br.s, 1H). ¹³C NMR (150.90 MHz, DMSO-d₆): δ 20.6, 118.5, 123.1, 130.2, 130.5, 135.0, 136.2, 137.1, 137.5, 138.8, 145.6, 152.2. HRMS (ESI, m/z): calcd for C₁₄H₁₁ClN₄O [M + H]⁺: 287.0694; found: 287.0700.

NMR spectra of synthesized compounds

¹H and ¹³C NMR spectra of compound **3a** in CDCl₃

 ^1H and ^{13}C NMR spectra of compound **3b** in CDCl_3

 ^1H and ^{13}C NMR spectra of compound 3c in CDCl_3

 1 H and 13 C NMR spectra of compound **4a** in CDCl₃

 ^1H and ^{13}C NMR spectra of compound 4b in CDCl_3

 ^1H and ^{13}C NMR spectra of compound 4c in CDCl_3

¹H and ¹³C NMR spectra of compound **6a** in CDCl₃

 ^1H and ^{13}C NMR spectra of compound 6b in CDCl_3

^1H and ^{13}C NMR spectra of compound 7b in CDCl_3

¹H and ¹³C NMR spectra of compound **7c** in DMSO- d_6

¹H and ¹³C NMR spectra of compound **8c** in DMSO- d_6

¹H and ¹³C NMR spectra of compound **9a** in DMSO- d_6

¹H and ¹³C NMR spectra of compound **9c** in DMSO- d_6

¹H and ¹³C NMR spectra of compound **10a** in DMSO- d_6

^1H and ^{13}C NMR spectra of compound 10b in CDCl_3

^1H and ^{13}C NMR spectra of compound 10c in CDCl_3

¹H NMR spectrum of compounds **12a** and **13a** in DMSO- d_6

¹H and ¹³C NMR spectra of compound **12c** in DMSO-*d*₆

¹H NMR spectrum of compound **12e** in DMSO-*d*₆

¹H and ¹³C NMR spectra of compound **12g** in DMSO- d_6

¹H NMR spectrum of compound **12h** in DMSO-*d*₆

¹H and ¹³C NMR spectra of compound **13a** in DMSO- d_6

^1H and ^{13}C NMR spectra of compound 13c in CDCl_3

^1H and ^{13}C NMR spectra of compound 13d in CDCl_3

¹H and ¹³C NMR spectra of compound **13f** in DMSO- d_6

¹H and ¹³C NMR spectra of compound **13g** in DMSO- d_6

X-ray crystallographic data and refinement details.

X-ray diffraction data for **12c**, **13c**, and **13d** were collected at 100 K on a Rigaku XtaLAB Synergy-S diffractometer equipped with a HyPix6000HE area-detector (kappa geometry, shutterless ω -scan technique), using monochromatized CuK_{α} (**12c**, **13c**) or MoK_{α} (**13d**) radiation. The intensity data were integrated and analytically corrected for absorption and decay with the CrysAlisPro program [1]. The structures were solved by direct methods using SHELXT [2] and refined by the full-matrix least-squares minimization method on F^2 using SHELXL-2018 [3] in the OLEX2 program [4]. Positions of all atoms were found from the electron density-difference map. Atoms were refined with individual anisotropic (non-hydrogen atoms) or isotropic (hydrogen atoms) displacement parameters.

Crystal data and structure refinement are provided in Table S1. Bond distances and parameters of intermolecular hydrogen bonds are given in Tables S2–S7. Crystallographic data have been deposited at the Cambridge Crystallographic Data Centre. CCDC deposition numbers are 2333057 (**12c**), 2333058 (**13c**) and 2333059 (**13d**). More detailed crystallographic information can be retrieved free of charge via https://www.ccdc.cam.ac.uk/structures.

References

1. CrysAlisPro. Version 1.171.42. *Rigaku Oxford Diffraction*, **2023**.

 Sheldrick, G. M. SHELXT - Integrated space-group and crystal-structure determination. *Acta Cryst.* 2015, *A71*, 3-8. https://doi.org/10.1107/S2053273314026370
 Sheldrick, G. M. Crystal structure refinement with SHELXL. *Acta Cryst.* 2015, *C71*, 3-8. https://doi.org/10.1107/S2053229614024218

4. Dolomanov O.V.; Bourhis L.J.; Gildea R.J.; Howard J.A.K.; Puschmann H.
OLEX2: a complete structure solution, refinement and analysis program. *J. Appl. Cryst.*2009, 42, 339-341. https://doi.org/10.1107/S0021889808042726

Identification code	12c	13c	13d
Empirical formula	$C_{14}H_9F_3N_4O$	$C_{14}H_9F_3N_4O$	$C_{14}H_8ClF_3N_4O$
Formula weight	306.25	306.25	340.69
Temperature, K	100.0(3)	100.0(2)	99.9(4)
Wavelength, Å	1.54184	1.54184	0.71073
Crystal system	Monoclinic	Monoclinic	Monoclinic
Space group	$P2_1/c$	$P2_{1}/n$	$P2_{1}/c$
Unit cell dimensions			
a, Å	8.44077(3)	5.22661(4)	15.49140(10)
b, Å	29.51699(11)	8.51464(7)	12.52173(8)
c, Å	10.45827(4)	29.0602(2)	7.12479(6)
β, °	93.4019(3)	90.8101(6)	103.2219(7)
Volume, Å ³	2601.045(17)	1293.128(17)	1345.424(17)
Z	8	4	4
Calculated density, g·cm ⁻³	1.564	1.573	1.682
Absorption coefficient, mm ⁻¹	1.155	1.161	0.330
F(000)	1248	624	688
Crystal size, mm	$0.73 \times 0.18 \times 0.15$	$0.48 \times 0.11 \times 0.09$	$0.46 \times 0.35 \times 0.25$
θ range for data collection, $^\circ$	2.994-76.934	3.042-76.973	2.114-35.462
Index ranges	$-10 \le h \le 10$,	$-5 \le h \le 6,$	$-24 \le h \le 25$,
	$-37 \le k \le 37$,	$-10 \le k \le 10$,	$-20 \le k \le 20$,
	$-13 \le l \le 13$	$-36 \le l \le 35$	$-10 \le l \le 11$
Reflections			
Collected	76609	15742	128154
Independent [R _{int}]	5466 [0.0430]	2742 [0.0264]	5908 [0.0285]
Observed for $I > 2\sigma(I)$	5391	2647	5768
Completeness to θ_{full} / θ_{max}	99.8 %	100.0 %	100.0 %
Max. / min. transmission	0.858 / 0.600	0.908 / 0.748	0.932 / 0.875
Data / restraints / parameters	5466 / 161 / 502	2742 / 88 / 254	5908 / 133 / 264
Goodness-of-fit on F ²	1.047	1.042	1.050
R1 / wR2 indices for I> $2\sigma(I)$	0.0332 / 0.0870	0.0339 / 0.0868	0.0274 / 0.0819
R1 / wR2 indices for all data	0.0335 / 0.0873	0.0348 / 0.0877	0.0279 / 0.0823
Extinction coefficient	0.00100(10)	0.0018(2)	-
$\Delta \rho(r)_{max} / \Delta \rho(r)_{max}$, ē·Å ⁻³	0.366 / -0.195	0.268 / -0.198	0.464 / -0.262
CCDC number	2333057	2333058	2333059

 Table S1. Crystal data and structure refinement for 12c, 13c, 13d.

Figure S1: Two crystallographically non-equivalent molecules of **12c**. Fluorine atoms of the first molecule are disordered over three positions F1, F2, F3 / F1A, F2A, F3A / F1B, F2B, F3B with the disorder ratio of 0.980(2) : 0.0093(17) : 0.0111(16). The CF₃ group of the second molecule is also disordered over three positions C22, F4, F5, F6 / C22A, F4A, F5A, F6A / C22B, F4B, F5B, F6B with the disorder ratio of 0.566(3) : 0.247(3) : 0.187(3). Anisotropic displacement parameters are set to a 50% probability level.

O1-N3	1.4222(12)	C8-F3B	1.341(3)	C19-C20	1.3838(16)
O1-C4	1.3530(13)	C9-C10	1.3968(16)	C20-C21	1.4075(16)
N1-H1N	0.908(16)	C9-C14	1.3932(16)	C20-C22	1.4972(19)
N1-N2	1.3408(13)	C10-H10	0.964(16)	C20-C22A	1.496(3)
N1-C9	1.4001(13)	C10-C11	1.3875(16)	C20-C22B	1.496(3)
N2-C1	1.2963(15)	С11-Н11	0.969(16)	C21-H21	0.976(15)
N3-C2	1.3136(14)	C11-C12	1.3890(19)	C22-F4	1.349(2)
N4-C3	1.3415(14)	C12-H12	0.984(16)	C22-F5	1.349(2)
N4-C7	1.3294(14)	C12-C13	1.3870(19)	C22-F6	1.346(2)
C1-H1	0.967(15)	С13-Н13	0.982(16)	C22A-F4A	1.347(2)
C1-C2	1.4500(15)	C13-C14	1.3928(16)	C22A-F5A	1.347(3)
C2-C3	1.4456(14)	C14-H14	0.932(16)	C22A-F6A	1.346(2)
C3-C4	1.3822(15)	O2-N7	1.4337(11)	C22B-F4B	1.347(3)
C4-C5	1.3836(15)	O2-C18	1.3534(13)	C22B-F5B	1.347(3)
C5-H5	0.954(15)	N5-H5N	0.897(17)	C22B-F6B	1.346(3)
C5-C6	1.3847(16)	N5-N6	1.3371(13)	C23-C24	1.3945(16)
C6-C7	1.4086(15)	N5-C23	1.3980(13)	C23-C28	1.3957(15)
C6-C8	1.5001(15)	N6-C15	1.2953(14)	C24-H24	0.961(16)
C7-H7	0.995(14)	N7-C16	1.3149(14)	C24-C25	1.3852(16)
C8-F1	1.3423(12)	N8-C17	1.3429(14)	С25-Н25	0.959(16)
C8-F2	1.3408(12)	N8-C21	1.3272(14)	C25-C26	1.3885(18)
C8-F3	1.3402(12)	C15-H15	0.956(15)	C26-H26	0.998(16)
C8-F1A	1.341(3)	C15-C16	1.4494(15)	C26-C27	1.3883(19)
C8-F2A	1.341(3)	C16-C17	1.4419(14)	С27-Н27	0.938(16)
C8-F3A	1.341(3)	C17-C18	1.3813(15)	C27-C28	1.3869(16)
C8-F1B	1.341(3)	C18-C19	1.3878(15)	C28-H28	0.973(15)
C8-F2B	1.341(3)	С19-Н19	0.973(15)		

Table S2: Bond lengths in 12c, Å.

Table S3: Hydrogen bond parameters for 12c, Å and °.

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
N1-H1NN3	0.908(16)	2.005(16)	2.7095(13)	133.2(13)
N5-H5NN7	0.897(17)	2.041(16)	2.7373(13)	133.5(14)

The structure of 13c

Figure S2: Two crystallographically non-equivalent molecules of **13c**. The CF₃ group is disordered over three positions C8, F1, F2, F3 / C8A, F1A, F2A, F3A / C8B, F1B, F2B, F3B with the disorder ratio of 0.722(3) : 0.142(3) : 0.136(3). Anisotropic displacement parameters are set to a 50% probability level.

N1-N2	1.3415(13)	C5-C6	1.3826(16)	C8B-F2B	1.342(3)
N1-C1	1.3280(15)	C6-C7	1.3934(17)	C8B-F3B	1.343(3)
N2-N3	1.3348(13)	C6-C8	1.4999(17)	C9-C10	1.3885(16)
N2-C9	1.4292(14)	C6-C8A	1.498(3)	C9-C14	1.3913(16)
N3-C2	1.3414(14)	C6-C8B	1.498(3)	C10-H10	0.959(16)
C1-H1	0.970(15)	С7-Н7	0.977(15)	C10-C11	1.3913(16)
C1-C2	1.4012(16)	C7-N4	1.3281(15)	C11-H11	0.963(17)
C2-C3	1.4628(15)	C8-F1	1.3455(19)	C11-C12	1.3868(18)
C3-C4	1.4013(16)	C8-F2	1.3401(19)	C12-H12	0.960(16)
C3-N4	1.3496(14)	C8-F3	1.3496(17)	C12-C13	1.3864(18)
C4-O1	1.3557(13)	C8A-F1A	1.342(3)	С13-Н13	0.946(17)
C4-C5	1.3936(15)	C8A-F2A	1.340(3)	C13-C14	1.3907(16)
O1-H1A	0.847(17)	C8A-F3A	1.342(3)	C14-H14	0.952(16)
С5-Н5	0.988(15)	C8B-F1B	1.342(3)		

Table S4: Bond lengths in 13c, Å.

Table S5: Hydrogen bond parameters for 13c, Å and °.

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
O1-H1AN3	0.847(17)	1.944(17)	2.7096(13)	149.8(14)

Figure S3: Two crystallographically non-equivalent molecules of **13d**. The CF₃ group is disordered over four positions F1, F2, F3 / F1A, F2A, F3A / F1B, F2B, F3B / F1C, F2C, F3C with the disorder ratio of 0.367(2) : 0.296(2) : 0.258(3) : 0.079(2). Anisotropic displacement parameters are set to a 50% probability level.

Cl1-C10	1.7272(7)	С5-Н5	0.930(13)	C8-F3B	1.342(2)
N1-N2	1.3413(8)	C5-C6	1.3888(10)	C8-F1C	1.344(2)
N1-C1	1.3313(9)	C6-C7	1.3938(9)	C8-F2C	1.344(2)
N2-N3	1.3335(8)	C6-C8	1.4952(10)	C8-F3C	1.348(2)
N2-C9	1.4228(8)	C7-H7	0.919(13)	C9-C10	1.3998(9)
N3-C2	1.3398(8)	C7-N4	1.3359(9)	C9-C14	1.3975(9)
C1-H1	0.955(14)	C8-F1	1.3391(14)	C10-C11	1.3931(9)
C1-C2	1.4034(9)	C8-F2	1.3644(15)	C11-H11	0.972(14)
O1-H1A	0.833(17)	C8-F3	1.3436(15)	C11-C12	1.3892(10)
O1-C4	1.3504(8)	C8-F1A	1.3415(17)	C12-H12	0.974(14)
C2-C3	1.4602(9)	C8-F2A	1.3448(17)	C12-C13	1.3913(11)
C3-C4	1.4095(9)	C8-F3A	1.3475(17)	С13-Н13	0.964(14)
C3-N4	1.3433(8)	C8-F1B	1.3533(19)	C13-C14	1.3874(10)
C4-C5	1.3922(9)	C8-F2B	1.3460(19)	C14-H14	0.963(13)

Table S6: Bond lengths in 13d, Å.

Table S7: Hydrogen bond parameters for 13d, Å and $^\circ\!.$

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
O1-H1AN3	0.833(17)	1.971(17)	2.6981(8)	145.3(16)