

Supporting Information

for

Visible-light-promoted radical cyclisation of unactivated alkenes in benzimidazoles: synthesis of difluoromethyl- and aryldifluoromethyl-substituted polycyclic imidazoles

Yujun Pang, Jinglan Yan, Nawaf Al-Maharik, Qian Zhang, Zeguo Fang and Dong Li

Beilstein J. Org. Chem. 2025, 21, 234–241. doi:10.3762/bjoc.21.15

Experimental procedures, product characterization, and copies of NMR spectra

License and Terms: This is a supporting information file under the terms of the Creative Commons Attribution License (https://creativecommons.org/ licenses/by/4.0). Please note that the reuse, redistribution and reproduction in particular requires that the author(s) and source are credited and that individual graphics may be subject to special legal provisions.

Table of contents	
Experimental section	
Instrumentation and chemicals	S2
Preparation of substrates	S2
Screening the reaction conditions	S2
Experimental procedures	S 3
Characterization data	S3–S11
Copies of ¹ H, ¹³ C, and ¹⁹ F NMR spectra	S12–S59
References	S 60

Experimental section

Instrumentation and chemicals

¹H NMR (400 MHz), ¹³C NMR (100 MHz), and ¹⁹F NMR (376 MHz) were recorded on a BrukerNMR apparatus with CDCl₃ as the solvent. The chemical shifts are reported in δ (ppm) values. ¹H NMR chemical shifts were determined relative to the internal tetramethylsilane signal at δ 0.0. ¹⁹F NMR chemical shifts were determined relative to external CFCl₃ at δ 0.0. Data for ¹H, ¹³C, and ¹⁹F NMR were recorded as follows: chemical shift (δ , ppm), multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet, dd = doublet of doublets, br = broad). Coupling constants (*J*) are reported in hertz (Hz). Melting points were measured by SGW X-4A microscopic apparatus. HRMS was measured by Q Exactive Hybrid Quadrupole-Orbitrap LC/MS spectrometer.

The starting materials, including the 1H-benzo[d]imidazole, sodium hydride obtained from commercial sources such as Aladdin, Macklin, Alfa Aesar, Ourchem and used as received unless otherwise noted. Ethyl acetate and petroleum ether were used for column chromatography without further purification.

Preparation of substrates

In a manner similar to reference^[1]. To a dried 100 mL round bottom flask equipped with a magnetic stir bar were added 1*H*-benzo[*d*]imidazole (10 mmol) and THF (40 mL). After cooling to 0 °C, NaH (480 mg, 20 mmol) was added and stirring was continued for 15 min at room temperature. Subsequently, bromoalkene (12 mmol) was added and stirring was further continued for 6 h at 80 °C to confirm completion of the reaction by TLC analysis. To the reaction mixture were added ethyl acetate ($30mL \times 3$) and water (30 mL) for extraction. The combined organic layers were dried over anhydrous sodium sulfate and concentrated under vacuum. Flash column chromatography on silica gel using ethyl acetate as an eluent afforded product **1**.

Screening the reaction conditions

Entry	1:2	PIDA (equiv)	Time (h)	Yield (%)
1	1:7	4.0	12	21
2	1:5	4.0	12	34
3	1:2	4.0	12	50
4	1:2	2.0	12	25
5	1:1	4.0	12	45

Experimental procedures

A 10 mL sealed tube was charged with **1a** (0.2 mmol, 37.2 mg), **2** (1.4 mmol, 134.4 mg), PIDA (0.8 mmol, 257.7 mg), and THF (2.0 mL). The tube was evacuated and backfilled with N₂ for 3 times. The resulting mixture was stirred and irradiated by 72 W white LEDs for 12 hours at room temperature. After the reaction was complete, the mixture was added into H₂O (25 mL) and extracted with ethyl acetate (10 mL) three times. The combined organic layer was dried over anhydrous MgSO₄ and filtered. After removal of the solvent in vacuo, the residue was purified by column chromatography (ethyl acetate/petroleum ether 1:4) to afford the pure product **3a** in 85% yield (40 mg, colourless oil).

Characterization data 4-(2,2-Difluoroethyl)-1,2,3,4-tetrahydrobenzo[4,5]imidazo[1,2-*a*]pyridine (3a)

Colourless oil (40 mg, 85% yield); ¹H NMR (400 MHz, CDCl₃): δ 7.82-7.59 (m, 1H), 7.41-7.10 (m, 3H), 6.39 (tdd, *J* = 56.8, 8.0, 4.7 Hz, 1H), 4.25-4.10 (m, 1H), 4.02-3.90 (m, 1H), 3.40-3.20 (m, 1H), 2.85-2.66 (m, 1H), 2.33-2.04 (m, 4H), 1.81-1.67 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 153.3, 142.6, 134.6, 122.3, 122.2, 119.2, 116.8 (t, *J* = 238.0 Hz), 109.0, 42.4, 38.0 (t, *J* = 22.0 Hz), 31.3 (dd, *J* = 6.0, 4.0 Hz), 27.5, 21.7; ¹⁹F {H} NMR (376 MHz, CDCl₃) δ -113.5 (d, *J* = 282.0 Hz, 1F), -117.6 (d, *J* = 285.8 Hz, 1F); HRMS (ESI, m/z)[M + H⁺]: calculated for C₁₃H₁₅F₂N₂: 237.1198, found 237.1186. The spectral data were in accordance with the literature^{[1][2]}.

6-Bromo-4-(2,2-difluoroethyl)-1,2,3,4-tetrahydrobenzo[4,5]imidazo[1,2-a]pyridine (3b)

Colourless oil (44.5 mg, 77% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.46 (d, *J* = 8.0 Hz, 1H), 7.29-7.25 (m, 1H), 7.13 (t, *J* = 8.0 Hz, 1H), 6.42 (tdd, *J* = 56.0, 5.3, 3.9 Hz, 1H), 4.21-4.16 (m, 1H), 4.02-3.97 (m, 1H), 3.40-3.32 (m, 1H), 2.92-2.76 (m, 1H), 2.36-2.03 (m, 4H), 1.82-1.76 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 154.0, 141.3, 135.2, 125.4, 123.1, 116.8 (t, *J* = 238.0 Hz), 112.8, 108,4 42.9, 38.0 (t, *J* = 21.0 Hz), 31.3 (dd, *J* = 6.0, 4.0 Hz), 27.2, 21.5; ¹⁹F { H } NMR (376 MHz, CDCl₃) δ -113.1 (d, *J* = 282.0 Hz, 1F), -117.6 (d, *J* = 282.0 Hz, 1F); HRMS (ESI, m/z)[M + H⁺]: calculated for C₁₃H₁₄BrF₂N₂: 315.0303, found 315.0298.

4-(2,2-Difluoroethyl)-9-methyl-1,2,3,4-tetrahydrobenzo[4,5]imidazo[1,2-*a*]pyridine (3c)

Colourless oil (33 mg, 66% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.22-7.08 (m, 2H), 7.09-7.00 (m, 1H), 6.47 (tdd, J = 56.9, 5.8, 3.6 Hz, 1H), 4.24-4.06 (m, 1H), 4.02-3.86 (m, 1H), 3.40-3.20 (m, 1H), 2.81-2.65 (m, 1H), 2.64 (s, 3H), 2.32-1.98 (m, 4H), 1.83 -1.67 (m, 1H).; ¹³C NMR (100 MHz, CDCl₃) δ 152.4, 141.8, 134.2, 129.2, 122.8, 122.1, 117.1 (t, J = 238.0 Hz), 106.5, 42.6, 38.3 (t, J = 21.0 Hz), 31.3 (dd, J = 7.0, 4.0 Hz), 27.5, 21.6, 16.6; ¹⁹F { H} NMR (376 MHz, CDCl₃) δ -113.2 (d, J = 282.0 Hz, 1F), -117.7 (d, J = 285.8 Hz, 1F); HRMS (ESI, m/z)[M + H⁺]: calculated for C₁₄H₁₇F₂N₂: 251.1355, found 251.1304. The spectral data were in accordance with the literature^[1].

4-(2,2-Difluoroethyl)-9-methoxy-1,2,3,4-tetrahydrobenzo[4,5]imidazo[1,2-*a*]pyridine (3d)

Colourless oil (33 mg, 67% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.20 (t, *J* = 2.0 Hz, 1H), 6.9 (d, *J* = 2.0 Hz, 1H), 6.69 (d, *J* = 2.0 Hz, 1H), 6.32 (tdd, *J* = 56.7, 5.3, 3.9 Hz, 1H), 4.17-4.12 (m, 1H), 4.01 (s, 3H), 3.97-3.91 (m, 1H), 3.33-3.25 (m, 1H), 2.97-2.82 (m, 1H), 2.32-2.00 (m, 4H), 1.78-1.69 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 151.9, 150.9, 136.1, 132.3, 116.9 (t, *J* = 238.0 Hz), 103.1, 102.4, 55.7, 42.7, 37.9 (t, *J* = 21.0 Hz), 31.2 (dd, *J* = 6.0, 5.0 Hz), 27.4, 21.6; ¹⁹F {H} NMR (376 MHz, CDCl₃) δ -113.3 (d, *J* = 282.0 Hz, 1F), -117.3 (d, *J* = 282.0 Hz, 1F); HRMS (ESI, m/z)[M + H⁺]: calculated for C₁₄H₁₇F₂N₂O: 267.1298, found 267.1299.

4-(2,2-Difluoroethyl)-7,8-difluoro-1,2,3,4-tetrahydrobenzo[4,5]imidazo[1,2-*a*]pyridine (3e)

White solid (38.2 mg, 70% yield); m.p. 115.6-116.6 °C;¹H NMR (400 MHz, CDCl₃) δ 7.50 (dd, J = 10.3, 7.2 Hz, 1H), 7.12 (dd, J = 9.5, 6.8 Hz, 1H), 6.36 (tdd, J = 56.6, 5.3, 3.6 Hz, 1H), 4.25-4.10 (m, 1H), -4.05-3.91 (m, 1H), 3.45-3.29 (m, 1H), 2.88-2.68 (m, 1H), 2.40-2.05 (m, 4H), 1.86-1.70 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 154.6 (d, J = 2.3 Hz), 149.4 (d, J = 14.0 Hz), 146.6 (dd, J = 15.0, J = 3.0 Hz), 135.9 (d, J = 11.0 Hz), 129.9 (d, J = 10.6 Hz), 116.7 (t, J = 239.0 Hz), 106.2 (d, J = 21 Hz), 97.5 (d, J = 23.0 Hz), 42.8, 37.7 (t, J = 22.0 Hz), 31.1 (dd, J = 7.0, 5.0 Hz), 29.71 26.86, 21.4; ¹⁹F {H} NMR (376 MHz, CDCl₃) δ -113.7 (d, J = 282.0 Hz, 1F), -117.7 (d, J = 282.0 Hz, 1F), -141.3 (d, J = 18.8 Hz, 1F), -142.3 (d, J = 22.6 Hz, 1F); HRMS (ESI, m/z)[M + H⁺]: calculated for C₁₃H₁₃F₄N₂: 273.1010, found 273.0999. The spectral data were in accordance with the literature^[1].

7,8-Dichloro-4-(2,2-difluoroethyl)-1,2,3,4-tetrahydrobenzo[4,5]imidazo[1,2-a]pyridine (3f)

White solid (48.8 mg, 80% yield); m.p. 126.5-127.5 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.76 (s, 1H), 7.37 (s, 1H), 6.39 (tdd, *J* = 56.7, 5.6, 3.6 Hz, 1H), 4.25-4.05 (m, 1H), 3.92 (td, *J* = 11.4, 4.7 Hz, 1H), 3.35-3.20 (m, 1H), 2.82-2.55 (m, 1H), 2.40-2.00 (m, 4H), 1.82-1.70 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 155.5, 142.0, 134.0, 126.3, 126.1, 120.4, 116.6 (t, *J* = 238.0 Hz), 110.4, 42.7, 37.9 (t, *J* = 21.0 Hz), 31.4 (dd, *J* = 4.3, 2.1 Hz), 27.3, 21.6; ¹⁹F {H} NMR (376 MHz, CDCl₃) δ -113.7 (d, *J* = 285.8 Hz, 1F), -118.0 (d, *J* = 282.0 Hz, 1F); HRMS (ESI, m/z)[M + H⁺]: calculated for C₁₃H₁₃Cl₂F₂N₂: 305.0418, found 305.0424. The spectral data were in accordance with the literature ^[1].

7,8-Dibromo-4-(2,2-difluoroethyl)-1,2,3,4-tetrahydrobenzo[4,5]imidazo[1,2-a]pyridine (3g)

White solid (52mg, 65% yield); m.p. 120.5-121.5 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.95 (s, 1H), 7.56 (s, 1H), 6.38 (tdd, J = 56.7, 5.5, 3.7 Hz, 1H), 4.22-4.07 (m, 1H), 4.00-3.86 (m, 1H), 3.33-3.19 (m, 1H), 2.77-2.59 (m, 1H), 2.35-2.02 (m, 4H), 1.84-1.67 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 155.3, 142.9, 134.8, 123.6, 117.5, 117.3, 116.6 (d, J = 237.0 Hz), 113.7, 42.7, 37.9 (t, J = 22.0 Hz), 31.3 (dd, J = 7.0, 5.0Hz), 27.2, 21.6; ¹⁹F {H} NMR (376 MHz, CDCl₃) δ -113.6 (d, J = 282.0 Hz, 1F), -118.0 (d, J = 285.8 Hz, 1F); HRMS (ESI, m/z)[M + H⁺]: calculated for C₁₃H₁₃Br₂F₂N₂: 394.9388, found; 394.9397. The spectral data were in accordance with the literature^[1].

4-(2,2-Difluoroethyl)-7,8-dimethyl-1,2,3,4-tetrahydrobenzo[4,5]imidazo[1,2-*a*]pyridine (3h)

White solid (23.8 mg, 45% yield); m.p. 168.5-169.5 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.50 (s, 1H), 7.08 (s, 1H), 6.38 (tdd, J = 56.8, 5.4, 3.8 Hz, 1H), 4.24-4.08 (m, 1H), 4.02-3.85 (m, 1H), 3.40-3.20 (m, 1H), 2.88-2.67 (m, 1H), 2.39 (d, J = 6.9 Hz, 6H), 2.33-2.01 (m, 4H), 1.83-1.69 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 153.1, 141.3, 134.2, 122.9, 122.6, 118.8, 116.7 (t, J = 238.0 Hz), 109.2, 42.5, 37.9 (t, J = 21.0 Hz), 31.0 (dd, J = 6.0, 4.0 Hz), 27.2, 21.5; ¹⁹F {H} NMR (376 MHz, CDCl₃) δ -113.5 (d, J = 285.8 Hz, 1F), -117.5 (d, J = 282.0 Hz, 1F); HRMS (ESI, m/z)[M + H⁺]: calculated for C₁₅H₁₉F₂N₂: 265.1511, found 265.1508. The spectral data were in accordance with the literature^{[1][2]}.

8-(2,2-Difluoroethyl)-2,3-diphenyl-5,6,7,8-tetrahydroimidazo[1,2-*a*]pyridine (3i)

White solid (28.5 mg, 42% yield); m.p. 158.0-159.0 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.49-7.38 (m, 5H), 7.34-7.31 (m, 2H), 7.20-7.16 (m, 2H), 7.13-7.09 (m, 1H), 6.57 (tdd, J = 57.2, 6.2, 3.3 Hz, 1H), 3.74-3.59 (m, 2H), 3.23-3.16 (m, 1H), 2.75-2.60 (m, 1H), 2.24-2.02 (m, 3H), 1.96-1.85 (m, 1H), 1.72-1.62 (m, 1H); ¹³C NMR (100 MHz, CDCl3) δ 146.2, 135.5, 133.2, 130.7, 130.1, 129.1, 128.8, 128.3, 127.7, 126.9, 126.8, 117.2 (t, J = 238.0 Hz), 44.0, 38.6 (t, J = 20.0 Hz), 30.3 (dd, J = 8.0, 4.0 Hz), 27.1, 22.7; ¹⁹F {H} NMR (376 MHz, CDCl₃) δ -113.0 (d, J = 282.0 Hz, 1F), -118.2 (d, J = 282.0 Hz, 1F); HRMS (ESI, m/z)[M + H⁺]: calculated for C₂₁H₂₀F₂N₂: 339.1668, found 339.1646. The spectral data were in accordance with the literature^[1].

Dimethyl 8-(2,2-difluoroethyl)-5,6,7,8-tetrahydroimidazo[1,2-a]pyridine-2,3-dicarboxylate (3j)

White solid (42 mg, 70% yield); m.p. 90.4-91.4 °C; ¹H NMR (400 MHz, CDCl₃) δ 6.22 (tdd, J = 56.5, 5.3, 3.8 Hz, 1H), 4.38-4.31 (m, 1H), 4.10-4.01 (m, 1H), 3.90 (d, J = 5.4 Hz, 6H), 3.20-3.10 (m, 1H), 2.80-2.60 (m, 1H), 2.28 – 1.95 (m, 4H), 1.72-1.61 (m, 1H).; ¹³C NMR (100 MHz, CDCl₃) δ 163.4, 160.5, 149.6, 136.2, 124.0, 116.5 (t, J = 238.0 Hz), 52.4, 52.3, 45.6, 37.9 (t, J = 21.0 Hz), 30.9 (dd, J = 7.0, 5.0 Hz), 26.5, 21.6; ¹⁹F {H} NMR (376 MHz, CDCl₃) δ -113.6 (d, J = 282.0 Hz, 1F), -117.6 (d, J = 282.0 Hz, 1F); HRMS (ESI, m/z)[M + H⁺]: calculated for C₁₃H₁₇F₂N₂O₄: 303.1151, found 303.1156. The spectral data were in accordance with the literature^[1].

Methyl 8-(2,2-difluoroethyl)-5,6,7,8-tetrahydroimidazo[1,2-*a*]pyridine-3-carboxylate (3k)

Colourless oil (39 mg, 80% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.70(s, 1H), 6.30 (tdd, *J* = 56.6, 5.5, 3.6 Hz, 1H), 4.58-4.44 (m, 1H), 4.15-4.07 (m, 1H), 3.85 (s, 3H), 3.24-3.17 (m, 1H), 2.71-2.55 (m, 1H), 2.25-1.96 (m, 4H), 1.73-1.67 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 160.6, 151.3, 135.3, 122.3, 116.5 (t, *J* = 238.0 Hz), 51.3, 45.4, 38.0 (t, *J* = 21.0 Hz), 30.8 (dd, *J* = 7.0, 5.0 Hz), 29.7, 26.4, 21.62; ¹⁹F {H} NMR (376 MHz, CDCl₃) δ -113.7 (d, *J* = 285.8 Hz, 1F), -117.8 (d, *J* = 285.8 Hz, 1F); HRMS (ESI, m/z)[M + H⁺]: calculated for C₁₁H₁₄F₂N₂O₂: 245.1066, found 245.1065.

3-(2,2-Difluoroethyl)-2,3-dihydro-1*H*-benzo[*d*]pyrrolo[1,2-*a*]imidazole (3l)

Colourless oil (29.5 mg, 66% yield); ¹H NMR (400 MHz, CDCl3) δ ¹H NMR (400 MHz, Chloroform-*d*) δ 7.76-7.67 (m, 1H), 7.36-7.28 (m, 1H), 7.29-7.20 (m, 2H), 6.26 (tdd, J = 56.2, 5.3, 3.2 Hz, 1H), 4.25-4.15 (m, 1H), 4.13-3.95 (m, 1H), 3.61-3.50 (m, 1H), 3.05-2.95 (m, 1H), 2.72-2.56 (m, 1H), 2.54-2.42 (m, 1H), 2.27-2.10 (m, 1H).; ¹³C NMR (100 MHz, CDCl₃) δ 161.5, 147.9, 132.1, 122.5, 122.2, 119.7, 116.1 (t, J = 238 Hz), 109.7, 42.2, 37.1 (t, J = 21.0 Hz), 33.7, 30.7 (dd, J = 7.0, 5.0 Hz); ¹⁹F {H} NMR (376 MHz, CDCl₃) δ -114.9 (d, J = 282.0 Hz, 1F), -118.0 (d, J = 285.8 Hz, 1F); HRMS (ESI, m/z)[M + H⁺]: calculated for C₁₂H₁₃F₂N₂: 223.1042, found 223.1060. The spectral data were in accordance with the literature^[1].

3-(2,2-Difluoroethyl)-8-methyl-2,3-dihydro-1*H*-benzo[*d*]pyrrolo[1,2-*a*]imidazole (3m)

Colourless oil (25 mg, 53% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.18-7.12 (m, 2H), 7.06-7.04 (m, 1H), 6.22 (tdd, J = 56.1, 5.2, 3.4 Hz, 1H), 4.20-4.14 (m, 1H), 4.07-4.01 (m, 1H), 3.03-2.95 (m, 1H), 2.77-2.67 (m, 1H), 2.65 (s, 3H), 2.53-2.43 (m, 1H), 2.21-2.13 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 160.8, 147.6, 131.8, 129.8, 122.5, 122.2, 116.2 (t, J = 238.0 Hz), 107.2, 42.0, 37.3 (t, J = 21.0 Hz), 30.7 (dd, J = 6.0, 4.0 Hz), 16.9; ¹⁹F {H} NMR (376 MHz, CDCl₃) δ -114.9 (d, J = 285.8 Hz, 1F), -117.7 (d, J = 282.0 Hz, 1F); HRMS (ESI, m/z)[M + H⁺]: calculated for C₁₃H₁₄F₂N₂: 237.1148, found 237.1149.

6,7-Dichloro-3-(2,2-difluoroethyl)-2,3-dihydro-1*H*-benzo[*d*]pyrrolo[1,2-*a*]imidazole (3n).

White solid (28 mg, 48% yield); m.p. 125.1-126.1 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.78 (s, 1H), 7.42 (s, 1H), 6.24 (tdd, J = 56.0, 5.3, 3.2 Hz, 1H), 4.19-4.14 (m, 1H), 4.07-4.01 (m, 1H), 3.58-3.50 (m, 1H), 3.06-2.98 (m, 1H), 2.64-2.48 (m, 2H), 2.26-2.15 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 163.8, 147.7, 131.4, 126.3, 126.1, 121.0, 115.8 (t, J = 239.0 Hz), 111.0, 42.4, 36.9 (t, J = 21.0 Hz), 33.8, 30.7 (dd, J = 7.0, 5.0 Hz), 29.7; ¹⁹F {H} NMR (376 MHz, CDCl₃) δ -115.1 (d, J = 285.8 Hz, 1F), -118.1 (d, J = 282.0 Hz, 1F); HRMS (ESI, m/z)[M + H⁺]: calculated for C₁₂H₁₀Cl₂F₂N₂: 291.0262, found 292.0264.

6-(2,2-Difluoroethyl)-7,8,9,10-tetrahydro-6H-benzo[4,5]imidazo[1,2-a]azepine (30)

Colourless oil (23.5 mg, 47% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.80-7.71 (m, 1H), 7.35-7.20 (m, 3H), 6.36 (tdd, J = 57.4, 6.3, 3.3 Hz, 1H), 4.49-4.35 (m, 1H), 4.08-3.96 (m, 1H), 3.38-3.25 (m, 1H), 3.05-2.87 (m, 1H), 2.32-1.97 (m, 4H), 1.96-1.82 (m, 1H), 1.67-1.51 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 157.3, 141.2, 135.3, 122.6, 122.0, 119.2, 116.7 (t, J = 238.0 Hz), 108.9, 44.1, 37.4 (t, J = 21.0 Hz), 34.2 (dd, J = 7.0, 4.0 Hz), 32.6, 29.3, 28.1; ¹⁹F {H} NMR (376 MHz, CDCl₃) δ -114.1 (d, J = 282.0 Hz, 1F), -118.4 (d, J = 285.8 Hz, 1F); HRMS (ESI, m/z): calculated for C₁₄H₁₇F₂N₂: 251.1355, found 251.1365. The spectral data were in accordance with the literature^[1].

6-(2,2-Difluoroethyl)-1-methyl-7,8,9,10-tetrahydro-6*H*-benzo[4,5]imidazo[1,2-*a*]azepine (3p)

Colourless oil (23.3 mg, 44% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.17-7.09 (m, 2H), 7.02 (d, *J* = 7.0 Hz, 1H), 6.41 (tdd, *J* = 57.6, 6.7, 3.0 Hz, 1H), 4.36-4.31 (m, 1H), 3.98-3.91 (m, 1H), 3.25-3.19 (m, 1H), 3.01 -2.84 (m, 1H), 2.64 (s, 3H), 2.23-2.12 (m, 2H), 2.04-1.92 (m, 2H), 1.89-1.78 (m, 1H), 1.63-1.49 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 156.3, 135.0, 129.4, 122.5, 117.0 (t, *J* = 237.0 Hz), 106.3, 44.3, 37.4 (t, *J* = 22.0 Hz), 34.3 (t, *J* = 6.0 Hz), 32.5, 28.9, 28.2, 16.7; ¹⁹F {H} NMR (376 MHz, CDCl₃) δ -113.9 (d, *J* = 282.0 Hz, 1F), -118.7 (d, *J* = 282.0 Hz, 1F); HRMS (ESI, m/z)[M + H⁺]: calculated for C₁₅H₁₈F₂N₂: 265.1498, found 265.1497.

5-(2,2-Difluoroethyl)-5,6-dihydrobenzo[4,5]imidazo[2,1-a]isoquinoline (3q)

Colourless oil (39.8 mg, 70% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.35-8.32 (m, 1H), 7.87-7.82 (m, 1H), 7.50-7.42 (m, 2H), 7.40-7.28 (m, 4H), 5.78 (tdd, *J* = 56.2, 3.5, 3.1 Hz, 1H), 4.46(dd, *J* = 12.8, 2.2 Hz, 1H), 4.32-4.27 (m, 1H), 3.60-3.55 (m, 1H), 2.22-1.96 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 148.3, 143.9, 136.6, 134.9, 130.6, 128.6, 127.9, 126.3, 126.0, 123.1, 122.8, 119.9, 115.9 (t, *J* = 238.0 Hz), 109.1, 44.8, 37.8 (t, *J* = 21.0 Hz), 33.2 (dd, *J* = 6.0, 3.0 Hz); ¹⁹F {H} NMR (376 MHz, CDCl₃) δ -115.7 (d, *J* = 285.8 Hz, 1F), -117.6 (d, *J* = 285.8 Hz, 1F); HRMS (ESI, m/z)[M + H⁺]: calculated for C₁₇H₁₅F₂N₂:285.1200, found 285.1202.The spectral data were in accordance with the literature ^{[1][3]}.

4-(2,2-Difluoro-2-phenylethyl)-1,2,3,4-tetrahydrobenzo[4,5]imidazo[1,2-a]pyridine (3r)

Colourless oil (31.2 mg, 50% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.72-7.68 (m, 1H), 7.60-7.57 (m, 2H), 7.45-7.40 (m, 3H), 7.27-7.19 (m, 3H), 4.17-4.10 (m, 1H), 3.95-3.88 (m, 1H), 3.51-3.32 (m, 2H), 2.53-2.18 (m, 3H), 2.03-1.97 (m, 1H), 1.77-1.72 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 153.7, 142.5, 137.2 (t, *J* = 260.0 Hz), 134.9, 129.9, 128.6, 125.0 (t, *J* = 6.0 Hz), 123.1 (t, *J* = 242.0 Hz), 122.3, 119.1, 109.0, 42.5, 42.2 (t, *J* = 27.0 Hz), 32.1, 27.3, 21.7; ¹⁹F {H} NMR (376 MHz, CDCl₃) δ -89.1 (d, *J* = 244.4 Hz, 1F), -98.5 (d, *J* = 244.4 Hz, 1F); HRMS (ESI, m/z)[M + H⁺]: calculated for C₁₉H₁₈F₂N₂: 313.1512, found 313.1513.

6-Bromo-4-(2,2-difluoro-2-phenylethyl)-1,2,3,4-tetrahydrobenzo[4,5]imidazo[1,2-*a*]pyridine (3s)

Colourless oil (31.3 mg, 40% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.72-7.68 (m, 1H), 7.60-7.57 (m, 2H), 7.45-7.40 (m, 3H), 7.27-7.19 (m, 3H), 4.17-4.10 (m, 1H), 3.95-3.88 (m, 1H), 3.51-3.32 (m, 2H), 2.53-2.18 (m, 3H), 2.03-1.97 (m, 1H), 1.77-1.72 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 154.5, 141.3, 137.3 (t, *J* = 27.0 Hz), 135.4, 129.9, 129.9, 128.5, 125.3, 125.0(t, *J* = 6.0 Hz), 123.1 (t, *J* = 241.0 Hz), 122.9, 112.6, 108.3, 42.9, 42.0 (t, *J* = 26.0 Hz), 32.2, 26.9, 21.5; ¹⁹F {H} NMR (376 MHz, CDCl₃) δ -89.1 (d, *J* = 244.4 Hz, 1F), -98.8 (d, *J* = 244.4 Hz, 1F); HRMS (ESI, m/z)[M + H⁺]: calculated for C₁₉H₁₈F₂N₂: 392.0605, found 392.0600.

4-(2,2-Difluoro-2-phenylethyl)-9-methoxy-1,2,3,4-tetrahydrobenzo[4,5]imidazo[1,2-*a*]pyridine (3t)

Colourless oil (22 mg, 32% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.64-7.54 (m, 2H), 7.48-7.38 (m, 3H), 7.16 (t, J = 8.0 Hz, 1H), 6.9-6.86 (m, 1H), 6.67 (d, J = 7.9 Hz, 1H), 4.20-4.13 (m, 1H), 3.99 (s, 3H), 3.98-3.90 (m, 1H), 3.70-3.50 (m, 1H), 3.41-3.31 (m, 1H), 2.60-2.35 (m, 1H), 2.41-2.20 (m, 2H), 2.08-1.96 (m, 1H), 1.85-1.70 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 152.3, 151.0, 137.4 (t, *J* = 27.0 Hz), 136.3, 132.6, 129.8, 128.5, 125.0(t, *J* = 6.0 Hz), 123.3 (t, *J* = 242.0 Hz), 122.8, 112.6, 102.6, 101.97, 55.6, 42.7, 42.1 (t, *J* = 27.0 Hz), 32.1, 27.2, 21.8; ¹⁹F {H} NMR (376 MHz, CDCl₃) δ -88.8 (d, *J* = 244.4 Hz, 1F), -99.1 (d, *J* = 244.4 Hz, 1F); HRMS (ESI, m/z)[M + H⁺]: calculated for C₁₉H₁₈F₂N₂: 343.1684, found 313.1688.

4-(2,2-Difluoro-2-phenylethyl)-7,8-difluoro-1,2,3,4-tetrahydrobenzo[4,5]imidazo[1,2*a*]pyridine (3u)

White solid (36.5 mg, 52% yield); m.p. 112.6-113.6 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.64-7.54 (m, 2H), 7.48-7.38 (m, 3H), 7.16 (t, J = 8.0 Hz, 1H), 6.9-6.86 (m, 1H), 6.67 (d, J = 7.9 Hz, 1H), 4.20-4.13 (m, 1H), 3.99 (s, 3H), 3.98-3.90 (m, 1H), 3.70-3.50 (m, 1H), 3.41-3.31 (m, 1H), 2.60-2.35 (m, 1H), 2.41-2.20 (m, 2H), 2.08-1.96 (m, 1H), 1.85-1.70 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 155.2 (d, *J* = 3.0 Hz), 149.8 (dd, *J* = 240.0, 4.0 Hz), 147.6 (dd, *J* = 240.0, 4.0 Hz) 137.6 (dd, *J* = 11.0, 2.0 Hz), 137.08 (t, *J* = 26.0 Hz), 130.1, 130.0, 128.3, 128.6, 124.9 (t, *J* = 6.0 Hz), 123.3 (t, *J* = 242.0 Hz), 122.8, 123.03 (t, *J* = 241.0 Hz), 106.4 (d, *J* = 19.0 Hz), 97.04 (d, *J* = 22.0 Hz), 42.7, 42.1 (t, *J* = 26.0 Hz), 32.2, 27.1, 21.6; ¹⁹F {H} NMR (376 MHz, CDCl₃) δ -88.8 (d, *J* = 244.4 Hz, 1F), -99.1 (d, *J* = 244.4 Hz, 1F), -142.8 (d, *J* = 18.8 Hz, 1F), -143.9 (d, *J* = 22.5 Hz, 1F);; HRMS (ESI, m/z)[M + H⁺]: calculated for C₁₉H₁₈F₂N₂: 349.1300, found 349.1302.

7,8-Dichloro-4-(2,2-difluoro-2-phenylethyl)-1,2,3,4-tetrahydrobenzo[4,5]imidazo[1,2*a*]pyridine (3v)

White solid (34.3 mg, 45% yield); m.p. 128.3-129.3 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.75 (s, 1H), 7.61-7.53 (m, 2H), 7.49-7.41 (m, 3H), 7.35 (s, 1H), 4.18-1.06(m, 1H), 3.97-3.81 (m, 1H), 3.50-3.30 (m, 2H), 2.59-2.48 (m, 1H), 2.45-2.22 (m, 2H), 2.11-1.97 (m, 1H), 1.85-1.69 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 155.9, 141.9, 137.0 (t, *J* = 26.0 Hz), 134.2, 130.0, 128.6, 128.5, 126.0, 125.4, 124.9 (t, *J* = 6.0 Hz), 123.0 (t, *J* = 242.0 Hz), 110.4, 42.7, 42.0 (t, *J* = 27.0 Hz), 32.2, 27.0, 21.6; ¹⁹F {H} NMR (376 MHz, CDCl₃) δ -89.5 (d, *J* = 244.4 Hz, 1F), -98.5 (d, *J* = 244.4 Hz, 1F); HRMS (ESI, m/z)[M + H⁺]: calculated for C₁₉H₁₈F₂N₂: 381.0859, found 381.0859.

4-(2,2-Difluoro-2-phenylethyl)-7,8-dimethyl-1,2,3,4-tetrahydrobenzo[4,5]imidazo[1,2*a*]pyridine (3w)

White solid (32.1 mg, 47% yield); m.p. 137.4-138.4 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.62-7.55 (m, 2H), 7.48-7.36 (m, 4H), 7.04 (s, 1H), 4.18-4.08 (m, 1H), 3.95-3.85 (m, 1H), 3.54-3.28 (m, 2H), 2.55-2.46 (m, 1H), 2.36 (d, J = 7.4 Hz, 6H), 2.28 – 2.19 (m, 1H), 2.10-1.93 (m, 2H), 1.80-1.68 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 152.8, 141.1,

137.3 (t, J = 26.0 Hz), 133.4, 131.0, 130.9, 129.9, 128.5, 125.0(t, J = 6.0 Hz), 123.2 (t, J = 243.0 Hz), 119.2, 109.3, 42.4, 42.2 (t, J = 27.0 Hz), 32.1, 27.3, 27.8, 20.5, 20.4; ¹⁹F {H} NMR (376 MHz, CDCl₃) δ -88.9 (d, J = 244.4 Hz, 1F), -98.6 (d, J = 244.4 Hz, 1F); HRMS (ESI, m/z)[M + H⁺]: calculated for C₁₉H₁₈F₂N₂: 341.1955, found 341.1956.

Dimethyl 8-(2,2-difluoro-2-phenylethyl)-5,6,7,8-tetrahydroimidazo[1,2-*a*]pyridine-2,3-dicarboxylate (3w)

Colourless oil (28.1 mg, 37% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.56-7.50 (m, 2H), 7.46-7.38 (m, 3H), 4.38-4.28 (m, 1H), 4.08-3.98 (m, 1H), 3.89 (d, J = 2.1 Hz, 6H), 3.40-3.20 (m, 2H), 2.48-2.39 (m, 1H), 2.36-2.11 (m, 2H), 1.98-1.84 (m, 1H), 1.78-1.66 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 163.3, 160.5, 149.9, 137.1 (t, *J* = 26.0), 136.0, 130.0, 129.9, 128.5, 128.4, 124.9(t, *J* = 6.0), 124.3, 122.9 (t, *J* = 242.0 Hz), 52.4, 52.3, 45.6, 42.1 (t, *J* = 27.0 Hz), 31.7, 26.2, 21.6; ¹⁹F {H} NMR (376 MHz, CDCl₃) δ -89.7 (d, *J* = 244.4 Hz, 1F), -98.9 (d, *J* = 244.4 Hz, 1F); HRMS (ESI, m/z): calculated for C₁₉H₁₈F₂N₂: 379.1434, found 379.1440.

Copies of ¹H, ¹³C, and ¹⁹F NMR spectra 4-(2,2-Difluoroethyl)-1,2,3,4-tetrahydrobenzo[4,5]imidazo[1,2-*a*]pyridine (3a)

¹H NMR (400 MHz, CDCl₃)

6-Bromo-4-(2,2-difluoroethyl)-1,2,3,4-tetrahydrobenzo[4,5]imidazo[1,2-*a*]pyridine (3b)

¹H NMR (400 MHz, CDCl₃)

4-(2,2-Difluoroethyl)-9-methyl-1,2,3,4-tetrahydrobenzo[4,5]imidazo[1,2-*a*]pyridine (3c)

f1 (ppm) -10

¹⁹F {H} NMR (376 MHz, CDCl₃)

4-(2,2-Difluoroethyl)-9-methoxy-1,2,3,4-tetrahydrobenzo[4,5]imidazo[1,2-*a*]pyridine (3d)

¹H NMR (400 MHz, CDCl₃)

¹⁹F {H} NMR (376 MHz, CDCl₃)

4-(2,2-Difluoroethyl)-7,8-difluoro-1,2,3,4-tetrahydrobenzo[4,5]imidazo[1,2-*a*]pyridine (3e)

¹H NMR (400 MHz, CDCl₃)

7,8-Dichloro-4-(2,2-difluoroethyl)-1,2,3,4-tetrahydrobenzo[4,5]imidazo[1,2-*a*]pyridine (3f)

¹H NMR (400 MHz, CDCl₃)

fl (ppm)

7,8-Dibromo-4-(2,2-difluoroethyl)-1,2,3,4-tetrahydrobenzo[4,5]imidazo[1,2-*a*]pyridine (3g)

¹H NMR (400 MHz, CDCl₃)

f1 (ppm) -10

¹⁹F {H} NMR (376 MHz, CDCl₃)

¹H NMR (400 MHz, CDCl₃)

210 200 -10 fl (ppm)

8-(2,2-Difluoroethyl)-2,3-diphenyl-5,6,7,8-tetrahydroimidazo[1,2-*a*]pyridine (3i)

¹H NMR (400 MHz, CDCl₃)

f1 (ppm) -10

Dimethyl 8-(2,2-difluoroethyl)-5,6,7,8-tetrahydroimidazo[1,2-a]pyridine-2,3-dicarboxylate (3j)

¹H NMR (400 MHz, CDCl₃)

4000000400000	0700000	00100400.	400000001	~ 50 4 4 m O 8 8 9 9 9	000044000
0000000000000000000	0000000	000000	NUNNNU	0000	000000000000
00004444444444	4444000		NNNNNNNNN	NANANANAN	

fl (ppm) -10

Methyl 8-(2,2-difluoroethyl)-5,6,7,8-tetrahydroimidazo[1,2-*a*]pyridine-3-carboxylate (3k)

¹H NMR (400 MHz, CDCl₃)

100 f1 (ppm)

3-(2,2-Difluoroethyl)-2,3-dihydro-1*H*-benzo[*d*]pyrrolo[1,2-*a*]imidazole (3l)

¹H NMR (400 MHz, CDCl₃)

10,000 10,000

3-(2,2-Difluoroethyl)-8-methyl-2,3-dihydro-1*H*-benzo[*d*]pyrrolo[1,2-*a*]imidazole (3m)

¹H NMR (400 MHz, CDCl₃)

¹⁹F {H} NMR (376 MHz, CDCl₃)

6,7-Dichloro-3-(2,2-difluoroethyl)-2,3-dihydro-1*H*-benzo[*d*]pyrrolo[1,2-*a*]imidazole (3n)

¹H NMR (400 MHz, CDCl₃)

000 N 0 0 0 0 0 4 7 7 0 0	000004	N N 4 0 1	0 v v v v v v		00114001	000000004
V400000000		-00000	222220000	000000000000	2000000000	044400
NNN000000044	44444	44444	4000000		NNNNNNN	NNNNNNNNN

¹⁹F {H} NMR (376 MHz, CDCl₃)

6-(2,2-Difluoroethyl)-7,8,9,10-tetrahydro-6*H*-benzo[4,5]imidazo[1,2-*a*]azepine (30)

¹H NMR (400 MHz, CDCl₃)

100 f1 (ppm)

6-(2,2-Difluoroethyl)-1-methyl-7,8,9,10-tetrahydro-6*H*-benzo[4,5]imidazo[1,2-*a*]azepine (3p)

¹H NMR (400 MHz, CDCl₃)

5-(2,2-Difluoroethyl)-5,6-dihydrobenzo[4,5]imidazo[2,1-*a*]isoquinoline (3q)

¹H NMR (400 MHz, CDCl₃)

¹⁹F {H} NMR (376 MHz, CDCl₃)

4-(2,2-Difluoro-2-phenylethyl)-1,2,3,4-tetrahydrobenzo[4,5]imidazo[1,2-*a*]pyridine (3r)

¹H NMR (400 MHz, CDCl₃)

6-Bromo-4-(2,2-difluoro-2-phenylethyl)-1,2,3,4-tetrahydrobenzo[4,5]imidazo[1,2-*a*]pyridine (3s)

¹H NMR (400 MHz, CDCl₃)

 $\begin{array}{c} -1.78\\ -1$

4-(2,2-Difluoro-2-phenylethyl)-9-methoxy-1,2,3,4-tetrahydrobenzo[4,5]imidazo[1,2-*a*]pyridine (3t)

¹H NMR (400 MHz, CDCl₃)

$\label{eq:constraint} 4-(2,2-difluoro-2-phenylethyl)-7,8-difluoro-1,2,3,4-tetrahydrobenzo [4,5] imidazo [1,2-difluoro-2-phenylethyl)-7,8-difluoro-1,2,3,4-tetrahydrobenzo [4,5] imidazo [1,2-difluoro-2-phenylethyl)-7,8-difluoro-1,2,3,4-tetrahydrobenzo [4,5] imidazo [1,2-difluoro-2-phenylethyl)-7,8-difluoro-1,2,3,4-tetrahydrobenzo [4,5] imidazo [1,2-difluoro-2-phenylethyl]-7,8-difluoro-1,2,3,4-tetrahydrobenzo [4,5] imidazo [1,2-difluoro-2-phenylethyl]-7,8-difluoro-1,2,3,4-tetrahydrobenzo [4,5] imidazo [1,2-difluoro-2-phenylethyl]-7,8-difluoro-2-phenylethyl]-7,8-difluoro-1,2,3,4-tetrahydrobenzo [4,5] imidazo [1,2-difluoro-2-phenylethyl]-7,8$

a]pyridine (3u)

¹H NMR (400 MHz, CDCl₃)

```
7.7.7.7.7.58
7.7.7.7.7.58
7.7.7.7.7.7.56
7.7.7.7.7.7.56
7.7.7.7.7.7.7.56
7.7.7.7.7.7.7.56
7.7.7.7.7.7.45
7.7.7.7.7.45
7.7.7.7.45
7.7.7.7.45
7.7.7.7.45
7.7.7.45
7.7.7.45
7.7.7.45
7.7.7.45
7.7.7.45
7.7.7.45
7.7.7.45
7.7.7.45
7.7.7.45
7.7.7.45
7.7.7.45
7.7.7.45
7.7.7.45
7.7.7.45
7.7.7.45
7.7.7.45
7.7.7.45
7.7.7.45
7.7.7.45
7.7.7.45
7.7.7.45
7.7.7.45
7.7.7.45
7.7.7.45
7.7.7.45
7.7.7.45
7.7.7.45
7.7.7.45
7.7.7.45
7.7.7.45
7.7.7.45
7.7.7.45
7.7.7.45
7.7.7.45
7.7.7.45
7.7.7.45
7.7.7.45
7.7.7.45
7.7.7.45
7.7.7.45
7.7.7.45
7.7.7.45
7.7.7.45
7.7.7.45
7.7.7.45
7.7.7.45
7.7.7.45
7.7.7.45
7.7.7.45
7.7.7.45
7.7.7.45
7.7.7.45
7.7.7.45
7.7.7.45
7.7.7.45
7.7.7.45
7.7.7.45
7.7.7.45
7.7.7.45
7.7.7.45
7.7.7.45
7.7.7.45
7.7.7.45
7.7.7.45
7.7.7.45
7.7.7.45
7.7.7.55
7.7.7.55
7.7.7.55
7.7.7.55
7.7.7.55
7.7.7.55
7.7.7.55
7.7.7.55
7.7.7.55
7.7.7.55
7.7.55
7.7.55
7.7.55
7.7.55
7.7.55
7.7.55
7.7.55
7.7.55
7.7.55
7.7.55
7.7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
7.55
```


7,8-Dichloro-4-(2,2-difluoro-2-phenylethyl)-1,2,3,4-tetrahydrobenzo[4,5]imidazo[1,2*a*]pyridine (3v) ¹H NMR (400 MHz, CDCl₃)

 $\begin{array}{c} 7.7.7.5\\ 7.7.5.5\\ 7.7.5.5\\ 7.7.5.5\\ 7.7.5.5\\ 7.7.5\\$

4-(2,2-Difluoro-2-phenylethyl)-7,8-dimethyl-1,2,3,4-tetrahydrobenzo[4,5]imidazo[1,2-*a*]pyridine (3w)

¹H NMR (400 MHz, CDCl₃)

-10 fl (ppm)

-10 fl (ppm)

References

- Lin, S.; Deng Y.; Zhong, H.; Mao, L.; Ji, C.; Zhu, X.; Zhang, X.; Yang, B. Visible Light-Induced Radical Cascade Difluoromethylation/Cyclization of Unactivated Alkenes: Access to CF₂H-Substituted Polycyclic Imidazoles. *ACS Omega* 2024, 9, 26, 28129–28143.
- [2]. Huang, P.; Lv, C.; Song, H.; Wang, C.; Du, J.; Li, J.; Sun,B.; Jin, C.; An in situ generated proton initiated aromatic fluoroalkylation via electron donor-acceptor complex photoactivation. *Green Chem.*, 2024,26, 7198-7205.
- [3]. Lv, Y.; Dai, J.-Y.; Zhao, Z.-X.; Liu, J.; Li, Z.-W.; Lu, C.-H.; Zhang, Y.-F.; Liu, W.-D.; Li, J.-S. Electrochemical Synthesis of 5-Trifluoroethyl Dihydrobenzimidazo[2,1-a]isoquinolines from Pendent Unactivated Alkenes via Radical Relay. *Tetrahedron Lett.* **2023**, 119, 154410-154414.