

Supporting Information

for

Synthesis, characterization, antimicrobial, cytotoxic and carbonic anhydrase inhibition activities of multifunctional pyrazolo-1,2-benzothiazine acetamides

Ayesha Saeed, Shahana Ehsan, Muhammad Zia-ur-Rehman, Erin M. Marshall, Sandra Loesgen, Abdus Saleem, Simone Giovannuzzi and Claudiu T. Supuran

Beilstein J. Org. Chem. 2025, 21, 348–357. doi:10.3762/bjoc.21.25

Experimental procedures, spectra (NMR, HRMS) and graphs of antimicrobial and cytotoxic assays

License and Terms: This is a supporting information file under the terms of the Creative Commons Attribution License (https://creativecommons.org/ licenses/by/4.0). Please note that the reuse, redistribution and reproduction in particular requires that the author(s) and source are credited and that individual graphics may be subject to special legal provisions.

Table of contents

Sr. #	Contents	Page #
1	Experimental procedures	S3
1 1	Synthesis of methyl (1,1-dioxido-3-oxo-1,2-benzisothiazol-2(3 <i>H</i>)-	63
1.1	yl)acetate (2)	- 55
12	Synthesis of methyl 4-hydroxy-2 <i>H</i> -1,2-benzothiazine-3-	53
1.2	carboxylate 1,1-dioxide (3)	00
13	Synthesis of methyl 4-hydroxy-2-methyl-2H-benzo[e][1,2]thiazine-	53
1.0	3-carboxylate 1,1-dioxide (4)	00
1.4	Synthesis of 2-chloro- <i>N</i> -aryl/benzyl/cyclohexylacetamides 6a – n	S4
2	Spectra of pyrazolo-1,2-benzothiazine acetamides 7a–n	S4
Figure S1	¹ H NMR spectrum of compound 7a in DMSO-d ₆	S4
Figure S2	¹³ C NMR spectrum of compound 7a in DMSO-d ₆	S5
Figure S3	HRMS of compound 7a	S5
Figure S4	¹ H NMR spectrum of compound 7b in DMSO-d ₆	S6
Figure S5	¹³ C NMR spectrum of compound 7b in DMSO-d ₆	S6
Figure S6	HRMS of compound 7b	S7
Figure S7	¹ H NMR spectrum of compound 7c in DMSO-d ₆	S7
Figure S8	¹³ C NMR spectrum of compound 7c in DMSO-d ₆	S8
Figure S9	HRMS of compound 7c	S8
Figure S10	¹ H NMR spectrum of compound 7d in DMSO-d ₆	S9
Figure S11	¹³ C NMR spectrum of compound 7d in DMSO-d ₆	S9
Figure S12	HRMS of compound 7d	S10
Figure S13	¹ H NMR spectrum of compound 7e in DMSO-d ₆	S10
Figure S14	¹³ C NMR spectrum of compound 7e in DMSO-d ₆	S11
Figure S15	HRMS of compound 7e	S11
Figure S16	¹ H NMR spectrum of compound 7f in DMSO-d ₆	S12
Figure S17	¹³ C NMR spectrum of compound 7f in DMSO-d ₆	S12
Figure S18	HRMS of compound 7f	S13
Figure S19	¹ H NMR spectrum of compound 7g in DMSO-d ₆	S13
Figure S20	¹³ C NMR spectrum of compound 7g in DMSO-d ₆	S14
Figure S21	HRMS of compound 7g	S14
Figure S22	¹ H NMR spectrum of compound 7h in DMSO-d ₆	S15
Figure S23	¹³ C NMR spectrum of compound 7h in DMSO-d ₆	S15
Figure S24	HRMS of compound 7h	S16

Figure S25	¹ H NMR spectrum of compound 7i in DMSO-d ₆	S16
Figure S26	¹³ C NMR spectrum of compound 7i in DMSO-d ₆	S17
Figure S27	HRMS of compound 7i	S17
Figure S28	¹ H NMR spectrum of compound 7j in DMSO-d ₆	S18
Figure S29	¹³ C NMR spectrum of compound 7j in DMSO-d ₆	S18
Figure S30	HRMS of compound 7j	S19
Figure S31	¹ H NMR spectrum of compound 7k in DMSO-d ₆	S19
Figure S32	¹³ C NMR spectrum of compound 7k in DMSO-d ₆	S20
Figure S33	HRMS of compound 7k	S20
Figure S34	¹ H NMR spectrum of compound 7I in DMSO-d ₆	S21
Figure S35	¹³ C NMR spectrum of compound 7I in DMSO-d ₆	S21
Figure S36	HRMS of compound 7I	S22
Figure S37	¹ H NMR spectrum of compound 7m in DMSO-d ₆	S22
Figure S38	¹³ C NMR spectrum of compound 7m in DMSO-d ₆	S23
Figure S39	HRMS of compound 7m	S23
Figure S40	¹ H NMR spectrum of compound 7n in DMSO-d ₆	S24
Figure S41	¹³ C NMR spectrum of compound 7n in DMSO-d ₆	S24
Figure S42	HRMS of compound 7n	S25
Figure S43	Graph showing results of antimicrobial single-dose microbroth	S26
rigure 040	assays of compounds 7a – n	020
Table S1	Results of single-dose antimicrobial and cytotoxic assays for	S27
	compounds 7a–n	021
Figure S44	Graph showing cytotoxicity of compounds 7a–n against human	S28
rigulo o ri	colon carcinoma cell line (HCT-116)	020
3	Characterization data of compounds 7a-n	S27
	References	S34

1. Experimental procedures

1.1 Synthesis of methyl 2-(1,1-dioxido-3-oxo-1,2-benzisothiazol-2(3*H*)yl)acetate (2)

Saccharine sodium (5.125 g, 25 mmol) was dissolved in DMF (30 mL) and methyl chloroacetate (2.712 g, 25 mmol) was added after the complete dissolution of saccharine sodium. The reaction mixture was stirred at 90–110 °C for 3–4 hours. After the completion of the reaction, the reaction mixture was allowed to cool to room temperature. Now the flask contents were poured into ice-cold water. White precipitates of methyl 2-(1,1-dioxido-3-oxobenzo[*d*]isothiazol-2(*3H*)-yl)acetate (**2**) were formed which were filtered, washed with excess of water and then recrystallized from ethanol [1,2]. M.P: 116-117°C, Yield: 5.487 g (86%).

1.2 Synthesis of methyl 4-hydroxy-2*H*-benzo[*e*][1,2]thiazine-3-carboxylate 1,1dioxide (3)

Fresh sodium methoxide (1.350 g, 25 mmol) was prepared using sodium metal and dry methanol (30 mL) as solvent. A solution of compound **2** (2.550 g, 10 mmol) in dry DMSO was prepared separately. Both of these solutions were prepared under moisture-free conditions. Then these two solutions were mixed at room temperature and swirled well until a dark orange red color was obtained. Then, the contents of the reaction mixture were poured over the mixture of ice and concentrated hydrochloric acid having pH 3. Keep on stirring while pouring the reaction mixture. White colored precipitates of methyl 4-hydroxy-2*H*-benzo[*e*][1,2]thiazine-3-carboxylate 1,1-dioxide (**3**) were formed, which were then filtered, washed with excess water, dried and recrystallized using ethanol [1,2]. M.P: 171-172°C, Yield: 1.531 g (60%).

1.3 Synthesis of methyl 4-hydroxy-2-methyl-2*H*-benzo[e][1,2]thiazine-3carboxylate 1,1-dioxide (4)

Compound **3** (5.100 g, 20 mmoles) was dissolved in acetone (20 mL) and sodium hydroxide (2 N) was added slowly while stirring at room temperature to set the pH at 10–11. The reaction mixture was stirred for 5 minutes. Then, dimethyl sulfate (2.520 g, 20 mmol) was added drop-wise. This reaction mixture was further stirred for 40 minutes. After the completion of the reaction, it was acidified with dilute hydrochloric acid until the appearance of white precipitates of methyl 4-hydroxy-2-methyl-*2H*-benzo[*e*][1,2]thiazine-3-carboxylate 1,1-dioxide (**4**). These were filtered, washed with water, dried and recrystallized with ethanol [3]. M.P 161-162°C, Yield: 3.822 g (71%).

1.4 Synthesis of 2-chloro-N-aryl/benzyl/cyclohexylacetamides 6a-n

Aryl/benzyl/cyclohexylamines (5 mmol) were dissolved in DCM and Na₂CO₃ solution (7%) was added dropwise to set the pH at 9.0. This reaction mixture was stirred for 30 minutes at room temperature. Then, chloroacetyl chloride (847 mg, 7.5 mmol) in 2 mL DCM was added drop-wise in about 10–15 min with vigorous stirring. Stirring was continued until the precipitation of solid 2-chloro-*N*-aryl/benzyl/cyclohexylacetamides **6a**–**n**. After the completion of the reaction, precipitates were filtered, washed with chilled distilled water, and dried to produce the desired alkylating agents [4].

2. Spectra of pyrazolo-1,2-benzothiazine acetamides 7a-n

Figure S1. ¹H NMR of compound 7a in DMSO-d₆ at 300 MHz.

Figure S2. ¹³C NMR of compound 7a in DMSO-d₆ at 75 MHz.

Figure S3. HRMS of compound 7a.

Figure S4. ¹H NMR of compound **7b** in DMSO-d₆ at 300 MHz.

Figure S5. ¹³C NMR of compound **7b** in DMSO-d₆ at 75 MHz.

Щ MS S	oectrum Result	s (zoomed	1)																									
27.↔	‡ Q 🗄	₩ V	^	<u> </u>	e	2.	- II	H H	8 <u>1</u>	೫ 9	6 %	×	唯 🎽	13														
x107	+ESI Scan (rt:	6.044 min)	Frag=1	30.0V AH	4_pos.d																							
13-																												228
1.25-																												119.0
1.2-																												
1.15-																												
1.1-																												
1.05-																												
1-																												
0.95-																												
0.9-																												
0.85-																												
0.0-																												
0.7-																												
0.65-																												
0.6-																												
0.55-																												
0.5-																												
0.45-																												
0.4-																												
0.35-																												
0.3-																												
0.23-	~																											
0.15-	.086															8						0519						
0.1-	865 559 -118	992 ·	9586	615			175			478			0435			2.03						361.0		592	957	2857		
0.05-	12.9	30.5	141.5	58.9			94.1			30.5			257.5			- 23						Ĭ		376.2	85.0	393.		
0		10			140	100	100	200	210 0			0 0 ²	ا میں آندیں		200		200	210	220	200			<u>الد</u>					
	110 120	130	140 1	50 160	170	180	190	200 4	210 2	20 23	0 24	0 250	260	2/0	280	290	300	310	320 .	33U 3	54U 35	0 360	1 3/0	U 38	10 39	10 400	1 410	420 430

Figure S6. HRMS of compound 7b.

Figure S7. ¹H NMR of compound 7c in DMSO-d₆ at 300 MHz.

Figure S8. ¹³C NMR of compound 7c in DMSO-d₆ at 75 MHz.

Figure S9. HRMS of compound 7c.

Figure S10. ¹H NMR of compound 7d in DMSO-d₆ at 300 MHz.

Figure S11. ¹³C NMR of compound 7d in DMSO-d₆ at 75 MHz.

I MS Spe	ctrum Re	sults (zoo	med)																										
2 ↔ 3	‡ Q	1	لا ک	. 🔺 🕻	9 0	2	• I 🕮	H I	<u>к</u> П	‰ 9	% %	1 1 1	li 🦗	4															
×10 7 +	ESI Scan	(rt: 5.768	min) Frag=	130.0V A	H8_pos.	d																							
1.2-																													1128
1.15-																													<u>ĝ</u>
1.1-																													1
1.05-																													
1-																													
0.95 -																							<u>8</u>						
0.9-																							341						
0.85 -																							1						
0.8-																													
0.75-																													
0.7-																													
0.65-																													
0.6-																													
0.55-																													
0.5																													•
0.4-																													
0.35-																													
0.3-																													
0.25 -																													
0.2-																													
0.15-	2											_					Ŧ	8							7	64	4		
0.1-	6 80											2479			0437		44								27.10	23.05	1.58		
0.05 -	ë 1											230			264.		-27.	8			323.(ਲ 	8	Ĭ		
0-1	110	120 1	0 1/0	160	100	170	100	100	200	210	220		240	250	200	270	200	200	200	210	220	220		250	<u></u>	270		200	
	110	120 13	140	150	160	170	180	190	200	210	220	230	240	250	260	270	Counts	230 vs Mas	300 is-to-Char	310 ge (m/z)	320	330	340	300	360	370	380	390	400 41

Figure S12. HRMS of compound 7d.

Figure S13. ¹H NMR of compound 7e in DMSO-d₆ at 300 MHz.

Figure S14. ¹³C NMR of compound 7e in DMSO-d₆ at 75 MHz.

Figure S15. HRMS of compound 7e.

Figure S16. ¹H NMR of compound 7f in DMSO-d₆ at 300 MHz.

Figure S17. ¹³C NMR of compound **7f** in DMSO-d₆ at 75 MHz.

Figure S18. HRMS of compound 7f.

Figure S19. ¹H NMR of compound **7g** in DMSO-d₆ at 300 MHz.

Figure S20. ¹³C NMR of compound **7g** in DMSO-d₆ at 75 MHz.

Figure S21. HRMS of compound 7g.

Figure S22. ¹H NMR of compound **7h** in DMSO-d₆ at 300 MHz.

Figure S23. ¹³C NMR of compound **7h** in DMSO-d₆ at 75 MHz.

Figure S24. HRMS of compound 7h.

Figure S25. ¹H NMR of compound 7i in DMSO-d₆ at 300 MHz.

Figure S26. ¹³C NMR of compound 7i in DMSO-d₆ at 75 MHz.

Figure S27. HRMS of compound 7i in DMSO-d₆ at 75 MHz.

Figure S28. ¹H NMR of compound 7j in DMSO-d₆ at 300 MHz.

Figure S29. ¹³C NMR of compound 7j in DMSO-d₆ at 75 MHz.

Figure S30. HRMS of compound 7j.

Figure S31. ¹H NMR of compound 7k in DMSO-d₆ at 300 MHz.

Figure S32. ¹³C NMR of compound 7k in DMSO-d₆ at 75 MHz.

Figure S33. HRMS of compound 7k.

Figure S34. ¹H NMR of compound 7I in DMSO-d₆ at 300 MHz.

Figure S35. ¹³C NMR of compound 7I in DMSO-d₆ at 75 MHz.

Ⅲ WS Sp	pectrum	Results (zo	omed)																					
₽ ↔	\$ 6	2 💶 😽	2	<u>* 4</u>	0 C 2	•	F 🙌 R	P 🖬 🎽	<mark>8</mark> % %	1	💌 🖪													
x107	+ESI Sc	an (rt: 6.86)	7 min) Fra	ag=130.0V A	H7_pos.d																			
1.1-																							듙	
1.05-																							46.1	
1-																							Ĩ	
0.95-																								
0.9-																								
0.85 -																								
0.8-																								
0.75-																								
0.7-																								
0.65 -																								
0.6-																								
0.55 -																								
0.5-																								
0.45 -																								
0.4-																								
0.35-																								
0.3-																								
0.25 -																								
0.2-																								
0.15-		_																						
0.1-	82 58	88	8	5 8					283		盟		ğ			119	115	106						
0.05 -	101.0	124.0	141.9	53.1					282		300.5		202			399.1	111	-439						
0	100	120	140	160	180	200	220	240	260	280	300	320	340	360	380	400	420	440	460	480	500	520	540	<u>h.</u>
		-											(Counts vs. Mas	s-to-Charge	(m/z)					-	-		

Figure S36. HRMS of compound 7I.

Figure S37. ¹H NMR of compound **7m** in DMSO-d₆ at 300 MHz.

Figure S38. ¹³C NMR of compound **7m** in DMSO-d₆ at 75 MHz.

Figure S39. HRMS of compound 7m.

Figure S40. ¹H NMR of compound 7n in DMSO-d₆ at 300 MHz.

Figure S41. ¹³C NMR of compound **7n** in DMSO-d₆ at 75 MHz.

III MS Sp	ectrum F	esults (zoo	med)																			
2 ↔	\$ G	1	ሄ 🛧	C 📐	C 2	• <u>1</u>	🛏 🖪 !	л 🔭 9	% 🐝 🛱	ГЩ (۵ ا											
×10 ⁶	+ESI Sca	n (rt: 6.939 r	nin) Frag=1	30.0V AH12	2_pos.d																	
9-																						2440
8.5-																						230
8-																						1
7.5-																						
7-																						
6.5-																						
6-																						
5.5-																						
5-																						
4.5-																						
4-																						
3.5																						
3.0																						
25																						
2.5																						
																					10	
1.5-		10													ş	X			8	2	2.232	
1-	82	8.08			8		g	3115					ŝ	8	8	823 84 8			2	53	5	
0.5-	101.0	1240			182.0		225.1	242.2					346.2	368.3	380.3	408.3				204.2		
L0	100	120	140	160	180	200	220	240	260	280	300	320	340	360	380	400 420	440	460	480	500	520	540
													Counters	n Mann-to-	harge (m	(7)						

Figure S42. HRMS of compound 7n.

Figure S43: Graph showing results of antimicrobial single-dose microbroth assays of compounds **7a–n**, dose of tested compounds = 125 μ g/mL, control antibiotics used: kanamycin = 50 μ g/mL (*Staphylococcus aureus* ATCC 25923), ampicillin = 50 μ g/mL (*Escherichia coli* ATCC 8739), and amphotericin B = 25 μ g/mL (*Candida albicans* ATCC 90027). Dimethylsulfoxide (DMSO) was used as the negative control at 1.25% v/v.

Table S1: Results of single-dose antimicrobial and cytotoxic assays for compounds **7a–n**; dosage of tested compounds = 125 μ g/mL; antibiotic control dosage (kanamycin = 50 μ g/mL (*Staphylococcus aureus* ATCC 25923), ampicillin = 50 μ g/mL (*Escherichia coli* ATCC 8739), and amphotericin B = 25 μ g/mL (*Candida albicans* ATCC 90027). For cytotoxic assays, dosage of tested compounds = 10 μ M; dosage of mensacarcin = 10 μ M.

	Percent survival / % Cell viability												
Samples	S. aureus	E coli (SD)	Calbicans (SD)	HCT-116									
	(SD)			(SD)									
7a	71.75 (21)	>100	96.68 (12)	85.40 (3)									
7b	37.17 (13)	95.34 (16)	86.98 (6)	88.90 (3)									
7c	>100	>100	>100	81.40 (2)									
7d	>100	92.68 (2)	>100	>100									
7e	>100	>100	>100	>100									
7f	>100	>100	>100	>100									
7g	>100	95.01 (1)	71.75 (0)	>100									
7h	16.73 (3)	>100	65.10 (5)	>100									
7i	>100	>100	84.21 (5)	87.30 (6)									
7j	>100	>100	99.45 (6)	>100									
7k	>100	94.18 (0.1)	>100	90.70 (4)									
71	>100	>100	>100	63.60 (1)									
7m	>100	>100	>100	>100									
7n	>100	92.35 (1)	>100	>100									
Kanamycin	0.37 (0.7)	-	_	_									
Ampicillin	_	4.16 (3)	_	_									
Amphotericin	_		4 71 (1)										
В	_		7.7 1 (1)										
Mensacarcin	_	_	_	11.50 (1)									

Figure S44: Graph showing cell viability of compounds **7a–n** against human colon carcinoma cell line (HCT-116, ATCC CCL-247), dose of tested compounds = 10 μ M, dose of positive control (mensacarcin) = 10 μ M.

3. Characterization data of compounds 7a-n

All the synthesized compounds in DMSO-d₆ were scanned for their ¹H NMR spectra at 300 MHz and ¹³C NMR at 75 MHz.

N-(4-Chlorophenyl)-2-(3-hydroxy-4-methyl-5,5-dioxidobenzo[e]pyrazolo [4,3-*c*] [1,2] thiazine-1(4*H*)-yl)acetamide (7a)

Off white solid, Yield 335 mg (80%), m.p 156-158 °C, FT-IR: 1537 (C=O), 1335, 1171 (SO₂), 1239 (C–N); ¹H NMR (δ): *N*-CH₃ (linked with thiazine ring) = 3.08 (s, 3H), *N*-CH₂ (linked with pyrazole ring) = 4.95 (s, 2H), N-H (amide) = 10.36 (s, 1H), O-H (linked with pyrazole ring) = 13.12 (s, 1H); Aromatic protons: 7.37 (d, 2H, J = 8.8 Hz), 7.65 (d, 2H, J = 8.7 Hz), 7.71 (d, 1H, J = 6.0 Hz), 7.86 (t, 1H, J = 7.5 Hz), 7.92 (t, 2H, J = 7.6 Hz); ¹³C NMR (δ): 38.1, 67.8, 109.2, 121.3, 123.7, 124.4, 124.8, 127.5, 129.2, 130.0, 130.2, 130.6, 133.8, 138.0, 154.3, 166.9; HR-MS: Mass to charge ratio calculated from theoretical formula C₁₈H₁₅CIN₄O₄S [M+H]⁺ 419.0575, observed 419.0578, Δppm 0.71.

N-(3-Chlorophenyl)-2-(3-hydroxy-4-methyl-5,5-dioxidobenzo[e] pyrazolo [4,3-*c*] [1,2] thiazine-1(4*H*)-yl)acetamide (7b)

Peach colored solid, Yield 331 mg (79%), m.p 170-172 °C, FT-IR: 1592 (C=O), 1335, 1179 (SO₂), 1298 (C–N); ¹H NMR (δ): *N*-CH₃ (linked with thiazine ring) = 3.08 (s,3H), *N*-CH₂ (linked with pyrazole ring) = 4.96 (s, 2H), N-H (amide) = 10.45 (s, 1H), O-H (linked with pyrazole ring) = 13.21 (s, 1H); Aromatic protons: 7.13 (d, 1H, J = 6.9 Hz), 7.35 (t, 1H, J = 8.1 Hz), 7.48 (d, 1H, J = 8.4 Hz), 7.61 (t, 1H, J = 7.7 Hz), 7.70 (t, 1H, J = 6.8 Hz), 7.83 (1H, s), 7.93 (d, 2H, J = 8.1 Hz); ¹³C NMR (δ): 38.1, 67.8, 109.1, 118.1, 119.2, 123.4, 123.7, 124.5, 124.7, 124.8, 130.2, 130.6, 131.0, 133.6, 133.7, 140.5, 154.2, 167.1; HR-MS: Mass to charge ratio calculated from theoretical formula C₁₈H₁₅CIN₄O₄S [M+H]⁺ 419.0575 and observed 419.0578, Δppm 0.71.

N-(3,5-Dimethylphenyl)-2-(3-hydroxy-4-methyl-5,5-dioxidobenzo[e]pyrazolo[4,3c][1,2]thiazine-1(4*H*)-yl)acetamide (7c)

Light brown solid, Yield 341 mg (83%), m.p 152-154 °C, FT-IR: 1510 (C=O), 1339, 1158 (SO₂), 1266 (C–N); ¹H NMR (δ): Ar-CH₃ (linked with *N*-aryl-acetamide) = 2.23 (s, 6H), *N*-CH₃ (linked with thiazine ring) = 3.09 (s, 3H), *N*-CH₂ (linked with pyrazole ring) = 4.92 (s, 2H), N-H (amide) = 10.04 (s, 1H), O-H (linked with pyrazole ring) = 13.10 (s,

1H); Aromatic protons: 6.70 (s, 1H), 7.24 (s, 2H), 7.69 (t, 1H, J = 7.5 Hz), 7.86 (t, 1H, J = 7.4 Hz), 7.89 – 7.96 (m, 2H); ¹³C NMR (δ): 21.5, 38.1, 67.7, 109.2, 117.5, 123.7, 124.4, 124.8, 125.5, 129.9, 130.2, 130.6, 133.7, 138.2, 138.9, 154.4, 166.5; HR-MS: Mass to charge ratio calculated from theoretical formula C₂₀H₂₀N₄O₄S [M+H]⁺ 413.1278 and observed 413.1289, Δ ppm 2.66.

2-(3-Hydroxy-4-methyl-5,5-dioxidobenzo[e]pyrazolo[4,3-c][1,2] thiazine-1(4*H*)yl)-*N*-(*m*-tolyl)acetamide (7d)

Light orange solid, Yield 322 g (81%), m.p 155-156 °C, FT-IR: 1537 (C=O), 1336, 1155 (SO₂), 1260 (C–N); ¹H NMR (δ): Ar-CH₃ (linked with *N*-aryl-acetamide) = 2.27 (s, 3H), *N*-CH₃ (linked with thiazine ring) = 3.09 (s, 3H), *N*-CH₂ (linked with pyrazole ring) = 4.94 (s, 2H), N-H (amide) = 10.14 (s, 1H), O-H (linked with pyrazole ring) = 13.14 (s, 1H); Aromatic protons: 6.88 (d, 1H, *J* = 7.5 Hz), 7.19 (t, 1H, *J* = 7.8 Hz), 7.39 (d, 1H, *J* = 8.3 Hz), 7.48 (s, 1H), 7.70 (t, 1H, *J* = 7.5 Hz), 7.80 – 8.04 (m, 3H); ¹³C NMR (δ): 21.6, 38.1, 67.8, 109.1, 117.0, 120.2, 123.7, 124.5, 124.6, 124.8, 129.1, 130.0, 130.2, 130.6, 133.7, 138.5, 139.0, 154.3, 166.6.; HR-MS: Mass to charge ratio calculated from theoretical formula C₁₉H₁₈N₄O₄S [M+H]⁺ 399.1122 and observed 399.1128, Δppm 1.50.

2-(3-Hydroxy-4-methyl-5,5-dioxidobenzo[e]pyrazolo[4,3-c][1,2] thiazine-1(*4H*)yl)-*N*-(2-nitrophenyl)acetamide (7e)

Yellow solid, Yield 334 g (78%), m.p 151-153 °C, FT-IR: 1494 (C=O), 1335, 1155 (SO₂), 1248 (C–N); ¹H NMR (δ): *N*-CH₃ (linked with thiazine ring) = 3.11 (s, 3H), *N*-CH₂ (linked with pyrazole ring) = 5.00 (s, 2H), N-H (amide) = 10.75 (s, 1H), O-H (linked with pyrazole ring) = 13.23 (s, 1H); Aromatic protons: 7.38 (t, 1H, *J* = 7.8 Hz), 7.71 (t, 1H, *J* = 7.5 Hz), 7.77 (t, 1H, *J* = 7.8 Hz), 7.87 (t, 1H, *J* = 7.4 Hz), 7.93 (t, 2H, *J* = 6.5 Hz), 8.10 (t, 2H, *J* = 8.9 Hz); ¹³C NMR (δ): 38.2, 68.0, 109.1, 123.8, 124.4, 124.5, 124.8, 125.5, 125.8, 130.2, 130.3, 130.7, 132.0, 133.8, 135.4, 140.6, 153.9, 167.30; HR-MS: Mass to charge ratio calculated from theoretical formula C₁₈H₁₅N₅O₆S [M+H]⁺ 430.0816 and observed 430.0821, Δ ppm 1.16.

N-Benzyl-2-(3-hydroxy-4-methyl-5,5-dioxidobenzo[e]pyrazolo[4,3-c][1,2] thiazine-1 (4*H*)-yl)acetamide (7f)

White solid, Yield 308 mg (77%), m.p 154-156 °C, FT-IR: 1536 (C=O), 1336, 1153 (SO₂), 1228 (C–N); ¹H NMR (δ): *N*-CH₃ (linked with thiazine ring) = 3.06 (s, 3H), Ar-CH₂ (benzyl) = 4.35 (d, J = 2.9 Hz, 2H), *N*-CH₂ (linked with pyrazole ring) = 4.80 (s, 2H), N-H (amide) = 8.65 (s, 1H), O-H (linked with pyrazole ring) = 13.14 (s, 1H); Aromatic protons: 7.13 – 7.48 (m, 5H), 7.70 (t, 1H, J = 7.2 Hz), 7.90 (t, 3H, J = 11.4 Hz); ¹³C NMR (δ): 38.1, 42.2, 67.9, 109.1, 123.7, 124.5, 124.7, 127.2, 127.6, 128.7, 129.9, 130.2, 130.6, 133.7, 139.7, 154.3, 167.91; HR-MS: Mass to charge ratio calculated from theoretical formula C₁₉H₁₈N₄O₄S [M+H]⁺ 399.1122 and observed 399.1131, Δppm 2.25.

2-(3-Hydroxy-4-methyl-5,5-dioxidobenzo[e]pyrazolo[4,3-c][1,2] thiazine-1(4*H*)yl)-*N*-(naphthalen-1-yl)acetamide (7g)

Light orange solid, Yield 351 mg (81%), m.p 161-163 °C, FT-IR: 1502 (C=O), 1338, 1157 (SO₂), 1252 (C–N); ¹H NMR (δ): *N*-CH₃ (linked with thiazine ring) = 3.11 (s, 3H), *N*-CH₂ (linked with pyrazole ring) = 5.13 (s, 2H), N-H (amide) = 10.22 (s, 1H), O-H (linked with pyrazole ring) = 13.20 (s, 1H); Aromatic protons: 7.50 (d, 1H, *J* = 7.8 Hz), 7.51 – 7.60 (m, 2H), 7.63 – 7.76 (m, 2H), 7.80 (d, 1H, *J* = 8.2 Hz), 7.87 (t, 1H, *J* = 7.6 Hz), 7.95 (d, 3H, *J* = 8.0 Hz), 8.08 – 8.13 (m, 1H); ¹³C NMR (δ): 38.1, 68.0, 109.2, 122.6, 123.4, 123.7, 124.5, 124.8, 126.0, 126.2, 126.4, 126.6, 128.6, 130.0, 130.2, 130.7, 133.4, 133.8, 134.2, 143.4, 154.5, 167.6; HR-MS: Mass to charge ratio calculated from theoretical formula $C_{22}H_{18}N_4O_4S$ [M+H]⁺ 435.1122 and observed 435.1128, Δppm 1.37.

N-(4-Bromophenyl)-2-(3-hydroxy-4-methyl-5, 5-dioxidobenzo [e] pyrazolo[4,3c][1,2] thiazine-1(4*H*)-yl)acetamide (7h)

Light yellow solid, Yield 378 mg (82%), m.p 185-186 °C, FT-IR: 1538 (C=O), 1349, 1172 (SO₂), 1270 (C–N); ¹H NMR (δ): *N*-CH₃ (linked with thiazine ring) = 3.08 (s, 3H), *N*-CH₂ (linked with pyrazole ring) = 4.95 (s, 2H), N-H (amide) = 10.40 (s, 1H), O-H (linked with pyrazole ring) = 13.03 (s, 1H); Aromatic protons: 7.50 (d, 2H, *J* = 8.9 Hz), 7.60 (d, 2H, *J* = 8.9 Hz), 7.69 (t, 1H, *J* = 7.5 Hz), 7.85 (t, 1H, *J* = 7.7 Hz), 7.93 (d, 2H, *J* = 9.0 Hz); ¹³C NMR (δ): 38.2, 67.8, 109.1, 115.5, 121.7, 123.7, 124.6, 124.8, 130.1,

130.6, 132.1, 133.7, 138.4, 154.3, 166.9; HR-MS: Mass to charge ratio calculated from theoretical formula $C_{18}H_{15}BrN_4O_4S [M+H]^+$ 463.0078 and observed 463.0070, $\Delta ppm - 1.72$.

2-((4-Methyl-1-(2-((4-nitrophenyl)amino)-2-oxoethyl)-5,5-dioxido-1,4-dihydro benzo[e] pyrazolo[4,3-c][1,2]thiazine-3-yl)oxy)-*N*-(4-nitrophenyl) acetamide (7i)

Light orange brown solid, Yield 475 mg (78%), m.p 185-187 °C, FT-IR: 1602, 1504 (C=O), 1328, 1175 (SO₂), 1253 (C–N); ¹H NMR (δ): *N*-CH₃ (linked with thiazine ring) = 3.08 (s, 3H), *N*-CH₂ (linked with pyrazole ring) = 5.01 (s, 2H), *O*-CH₂ (linked with pyrazole ring) = 5.31 (s, 2H), N-H (amide) = 10.82 (s, 1H), N-H (amide) = 11.07 (s, 1H); Aromatic protons: 7.82-8.20 (m, 12H); ¹³C NMR (δ): 37.9, 55.0, 68.2, 112.6, 119.5, 125.5, 127.6, 129.1, 130.5, 131.8, 133.7, 134.7, 143.3, 145.1, 166.7, 166.7; HR-MS: Mass to charge ratio calculated from theoretical formula $C_{26}H_{21}N_7O_9S$ [M+H]⁺ 608.1194 and observed 608.1202, Δppm 1.31.

N-(4-Methoxyphenyl)-2-(3-(2-((4-methoxyphenyl)amino)-2-oxoethoxy)-4-methyl-5,5-dioxidobenzo[e]pyrazolo[4,3-c][1,2]thiazine-1(4*H*)-yl)acetamide (7j)

Light orange solid, Yield 442 mg (77%), m.p 180-182 °C, FT-IR: 1610, 1506 (C=O), 1334, 1170 (SO₂), 1232 (C–N); ¹H NMR (δ): *N*-CH₃ (linked with thiazine ring) = 3.08 (s, 3H), *O*-CH₃ (linked with *N*-aryl-acetamide) = 3.72 (s, 6H), *N*-CH₂ (linked with pyrazole ring) = 4.91(s, 2H), *O*-CH₂ (linked with pyrazole ring) = 5.22 (s, 2H), N-H (amide) = 10.06 (s, 1H), N-H (amide) = 10.40 (s, 1H); Aromatic protons: 6.82-6.93 (m, 4H), 7.49-7.54 (m, 4H), 7.75 (d, 1H, *J* = 7.8 Hz), 7.87 (d, 1H, *J* = 6.8 Hz), 7.98-8.08 (m, 2H); ¹³C NMR (δ): 38.0, 54.8, 55.6, 55.6, 67.9, 109.9, 114.3, 114.4, 121.3, 121.6, 124.3, 125.3, 128.4, 130.2, 131.4, 132.0, 133.7, 135.4, 137.1, 153.8, 155.9, 156.0, 165.2, 165.8; HR-MS: Mass to charge ratio calculated from theoretical formula C₂₈H₂₇N₅O₇S [M+H]⁺ 578.1704 and observed 578.1710, Δppm 1.03.

N-(2,3-Dimethylphenyl)-2-(3-(2-((2,3-dimethylphenyl)amino)-2-oxoethoxy)-4methyl-5,5-dioxidobenzo[e]pyrazolo[4,3-c][1,2]thiazine-1(4*H*)-yl)acetamide (7k)

Light pink solid, Yield 482 mg (84%), m.p 198-199 °C, FT-IR: 1670, 1536 (C=O), 1348, 1155 (SO₂), 1268 (C–N); ¹H NMR (δ): Ar-CH₃ (linked with *N*-aryl-acetamide) = 2.07 (s, 3H), Ar-CH₃ (linked with *N*-aryl-acetamide) = 2.11 (s, 3H), Ar-CH₃ (linked with *N*-aryl-acetamide) = 2.22 (s, 3H), Ar-CH₃ (linked with *N*-aryl-acetamide) = 2.24 (s, 3H), *N*-

CH₃ (linked with thiazine ring) = 3.09 (s, 3H), *N*-CH₂ (linked with pyrazole ring) = 4.96 (s, 2H), *O*-CH₂ (linked with pyrazole ring) = 5.32 (s, 2H), N-H (amide) = 9.62 (s, 1H), N-H (amide) = 9.86 (s, 1H); Aromatic protons: 7.00 – 7.10 (m, 4H), 7.18 (ddd, 2H, *J* = 14.2, 6.3, 2.8 Hz), 7.75 (t, 1H, *J* = 7.7 Hz), 7.88 (t, 1H, *J* = 7.4 Hz), 8.00 (td, 2H, *J* = 6.3, 3.2 Hz); ¹³C NMR (δ): 14.4, 14.5, 20.6, 20.6, 37.9, 54.6, 68.1, 109.9, 123.8, 124.2, 124.3, 125.2, 125.2, 125.6, 125.7, 127.7, 130.2, 131.2, 131.4, 131.5, 132.2, 133.6, 135.8, 135.8, 137.4, 137.6, 153.7, 165.9, 166.6; HR-MS: Mass to charge ratio calculated from theoretical formula $C_{30}H_{31}N_5O_5S$ [M+H]⁺ 574.2119 and observed 574.2126, Δppm 1.21.

2-((4-Methyl-5,5-dioxido-1-(2-oxo-2-(*o*-tolylamino)ethyl)-1,4-dihydrobenzo [e]pyrazolo [4,3-c][1,2]thiazine-3-yl)oxy)-*N*-(*o*-tolyl)acetamide (7l)

Light yellow solid , Yield 438 mg (80%), m.p 202-203 °C, FT-IR: 1610, 1513 (C=O), 1339, 1177 (SO₂), 1260 (C–N); ¹H NMR (δ): Ar-CH₃ (linked with *N*-aryl-acetamide) = 2.20 (s, 3H), Ar-CH₃ (linked with *N*-aryl-acetamide) = 2.24 (s, 3H), *N*-CH₃ (linked with thiazine ring) = 3.09 (s, 3H), *N*-CH₂ (linked with pyrazole ring) = 4.97 (s, 2H), *O*-CH₂ (linked with pyrazole ring) = 5.33 (s, 2H), N-H (amide) = 9.54 (s, 1H), N-H (amide) = 9.78 (s, 1H); Aromatic protons: 7.08 – 7.21 (m, 4H), 7.22 (t, 2H, *J* = 5.4 Hz), 7.43 (t, 2H, *J* = 7.1 Hz), 7.75 (t, 1H, *J* = 7.6 Hz), 7.88 (t, 1H, *J* = 7.8 Hz), 7.99 (d, 2H, *J* = 7.9 Hz); ¹³C NMR (δ): 18.2, 18.3, 38.0, 54.7, 68.0, 109.9, 124.3, 125.2, 125.3, 125.7, 126.0, 126.4, 126.5, 130.2, 130.8, 130.9, 131.2, 131.4, 132.1, 132.6, 133.6, 136.0, 153.7, 165.9, 166.5; HR-MS: Mass to charge ratio calculated from theoretical formula C₂₈H₂₇N₅O₅S [M+H]⁺ 546.1806 and observed 546.181, Δppm 0.91.

2-((4-Methyl-5,5-dioxido-1-(2-oxo-2-(*p*-tolylamino)ethyl)-1,4-dihydrobenzo [e]pyrazolo [4,3-c][1,2]thiazine-3-yl)oxy)-*N*-(*p*-tolyl)acetamide (7m)

Light yellow solid, Yield 431 mg (79%), m.p 205-207 °C, FT-IR: 1653, 1537 (C=O), 1341, 1180 (SO₂), 1262 (C–N); ¹H NMR (δ): Ar-CH₃ (linked with *N*-aryl-acetamide) = 2.24 (s, 3H), Ar-CH₃ (linked with *N*-aryl-acetamide) = 2.25 (s, 3H), *N*-CH₃ (linked with thiazine ring) = 3.07 (s, 3H), *N*-CH₂ (linked with pyrazole ring) = 4.92 (s, 2H), *O*-CH₂ (linked with pyrazole ring) = 5.23 (s, 2H), N-H (amide) = 10.09 (s, 1H), N-H (amide) = 10.40 (s, 1H); Aromatic protons: 7.05 – 7.17 (m, 4H), 7.48 (d, 2H, *J* = 8.4 Hz), 7.74 (t, 1H, *J* = 8.0 Hz), 7.86 (t, 1H, *J* = 7.7 Hz), 7.99 (d, 2H, *J* = 9.1 Hz); ¹³C NMR (δ): 21.0, 38.0, 54.8, 67.8, 109.8, 119.7, 119.9, 124.3, 125.2, 125.3, 129.6, 129.7, 130.2, 131.4,

132.9, 133.2, 133.7, 136.4, 136.4, 153.8, 165.5, 166.0; HR-MS: Mass to charge ratio calculated from theoretical formula $C_{28}H_{27}N_5O_5S$ [M+H]⁺ 546.1806 and observed 546.1812, Δppm 1.09.

N-Cyclohexyl-2-(3-(2-(cyclohexylamino)-2-oxoethoxy)-4-methyl-5,5 dioxido benzo[e] pyrazolo[4,3-c][1,2]thiazine-1(4*H*)-yl)acetamide (7n)

Light orange solid, Yield 417 mg (79%), m.p 196-198 °C, FT-IR: 1657, 1511 (C=O), 1341, 1152 (SO₂), 1252 (C–N); ¹H NMR (δ): CH₂ (cyclohexyl) = 1.26 - 1.19 (m, 10H), CH₂ (cyclohexyl) = 1.76 - 1.64 (m, 10H), *N*-CH₃ (linked with thiazine ring) = 3.03 (s, 3H), CH (cyclohexyl) = 3.61 - 3.53 (m, 2H), *N*-CH₂ (linked with pyrazole ring) = 4.66 (s, 2H), *O*-CH₂ (linked with pyrazole ring) = 4.95 (s, 2H), N-H (amide) = 7.74 (d, *J* = 7.8 Hz, 1H), N-H (amide) = 8.23 (d, *J* = 7.8 Hz, 1H); Aromatic protons: 7.91 (m, 4H); ¹³C NMR (δ): 24.9, 25.1, 25.2, 25.6, 26.8, 31.4, 32.8, 37.9, 47.9, 48.3, 54.3, 67.8, 109.7, 124.3, 125.1, 125.2, 130.1, 131.0, 131.4, 133.5, 153.6, 165.8, 166.3; HR-MS: Mass to charge ratio calculated from theoretical formula C₂₆H₃₅N₅O₅S [M+H]⁺ 530.2432 and observed 529.2340, Δppm 1.51.

References

- Zia-ur-Rehman, M.; Choudary, J. A.; Ahmad, S. Bull. Korean Chem. Soc. 2005, 26 (11), 1771–1775, doi:10.5012/bkcs.2005.26.11.1771.
- Siddique, W. S.; Ahmad, S.; Ullah, I.; Malik. A.; J. Chem. Soc. Pak. 2006, 28 (6), 583-589.
- Ahmad, N.; Zia-ur-Rehman, M.; Siddiqui, H. L.; Ullah, M. F.; Parvez, M. *Eur. J. Med. Chem.* 2011, 46, 2368–2377. doi:10.1016/j.ejmech.2011.03.020.
- Sattar, A.; Ur Rehman, A.; Abbasi, M. A.; Siddiqui, S. Z.; Rasool, S.; Khalid, H.; Lodhi, M .A.; Khan, F. A. *Turk. J. Chem.* **2018**, 42, 401–417. doi:10.3906/kim-1706-50.