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1. General information

Unless otherwise indicated, all reactions were conducted in dry glassware with
a Schlenk line under an argon atmosphere. The commercial reagents of Cul,
p-TsCl, DMAP, NaH, DEM, NH3-BHs, RuCls, and (S)-MTPACI were analytical
reagent grade and used as received. The solvents of Et2O, DCM, THF, and
EtsN were dried from CaHz and distilled prior to use. Optical rotations were
measured on a Rudolph AUTOPOL-IV polarimeter. 'H and '3*C NMR spectra
were collected on a Bruker AscendTM 500 MHz spectrometer, and the chemical
shifts were reported in ppm with the references of TMS (0.00 ppm) and CDCIs
(77.16 ppm). High-resolution mass (HRMS) data were obtained from a Waters

LCT Premier™ mass spectrometer equipped with an ESI source.

2. Synthesis of the aggregation pheromone of Tribolium

castaneum

Scheme S1: Synthesis of chiral tosylate (S)-10.
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A~ BOH

(R)-Hex-5-en-2-ol ((R)-4) (CAS 17397-29-4) [1,2]

To a 500 mL Schlenk flask was added Cul (0.98 g, 5.17 mmol) at room
temperature. The flask was cooled to —30 °C, and then allylmagnesium bromide
(3, 77.5 mL, 1.0 M in THF, 77.50 mmol) was added at the same temperature.
After being stirred for 30 min, (R)-2-methyloxirane ((R)-2, 3.00 g, 51.65 mmol)
in dry Et20 (30.0 mL) was added dropwise through a syringe over 2 h. The
reaction mixture was maintained for 6 h at -30 °C, followed by quenching with
saturated NH4Cl aqueous solution (50 mL). After allowing the mixture to warm
to room temperature, it was diluted with water (50 mL). The two layers were
separated, and the aqueous layer was extracted with Et2O (50 mL x 3). The
ether extracts were combined with the organic layer, and washed with brine
(280 mL). The solution was dried over anhydrous Na2S04, and concentrated by
a rotary evaporator at low temperature. The residue was a yellow liquid, which
was a mixture of (R)-hex-5-en-2-ol ((R)-4) and (S)-2-methylpent-4-en-1-ol ((S)-
4’) (4.83 g, ratio 8:1, determined by the '"H NMR spectrum).

In order to remove (S)-2-methylpent-4-en-1-ol ((S)-4’) from the chiral secondary
alcohol (R)-4, a selective oxidation of the primary alcohol with TEMPO was
conducted. To another 200 mL Schlenk flask were added TEMPO (0.17 g,
1.06 mmol) and TBACI (0.29 g, 1.06 mmol) at room temperature, and an
aqueous buffer solution (55 mL, 0.5 M NaHCOs3, and 0.05 M K2CO3) and DCM
(55 mL) were added through a syringe. Subsequently, the mixture of (R)-hex-
5-en-2-ol ((R)-4) and (S)-2-methylpent-4-en-1-ol ((S)-4’) (4.83 g) and NCS
(1.84 g, 13.78 mmol) were added. The reaction mixture was maintained for 8 h
at room temperature, followed by quenching with H20 (50 mL). The two layers
were separated, and the aqueous layer was extracted with DCM (50 mL x 3).
The dichloromethane extracts were combined with the organic layer, and
washed with brine (230 mL). The solution was dried over anhydrous Na2SO4,

and concentrated by a rotary evaporator at low temperature. The residue was
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purified by column chromatography on silica gel with an eluent of n-
pentane/Et20 3:2 to afford (R)-hex-5-en-2-ol ((R)-4, 2.83 g, 58% yield, >99% ee,
determined by 'H NMR spectroscopy of its Mosher ester) as a colorless oil.
[a]p?? = —=7.38 (¢ = 2.17, CHCI3). "H NMR (500 MHz, CDCl3) & 5.84 (ddt, J =
16.9, 10.2, 6.7 Hz, 1H), 5.05 (dq, J = 17.2, 1.7 Hz, 1H), 4.98 (dq, J = 10.1, 1.5
Hz, 1H), 3.85-3.81 (m, 1H), 2.21 - 2.11 (m, 2H), 1.61 — 1.52 (m, 2H), 1.39 (br
s, 1H), 1.21 (d, J = 6.2 Hz, 3H). '*C NMR (126 MHz, CDCI3) d 138.6, 114.9,
67.9, 38.4, 30.3, 23.6. HRMS (ESI) m/z: calcd for CsH120 [M]* 100.08827,
found 100.08735.

A~ BLOTs

(R)-Hex-5-en-2-yl  4-methylbenzenesulfonate ((R)-5) (CAS
2715086-71-6) [3]

To a 200 mL Schlenk flask were added p-TsCl (5.93 g, 31.10 mmol), DMAP
(1.74 g, 14.20 mmol), and DCM (100 mL) at room temperature. After the
resulting mixture was cooled to 0 °C and stirred for 30 min, EtsN (5.75 g,
56.80 mmol) and (R)-hex-5-en-2-ol ((R)-4, 2.83 g, 28.27 mmol) were added
sequentially. After allowing the reaction solution to warm to room temperature
and maintain for 8 h, the reaction was quenched with saturated NaHCOs
aqueous solution (50 mL). The two layers were separated, and the aqueous
layer was extracted with DCM (50 mL x 3). The dichloromethane extracts were
combined with the organic layer, washed with brine (210 mL). The solution was
dried over anhydrous Na2SO4 and concentrated by a rotary evaporator. The
residue was purified by column chromatography on silica gel with an eluent of
petroleum ether/ethyl acetate 20:1 to afford (R)-hex-5-en-2-yl 4-
methylbenzenesulfonate ((R)-5, 6.33 g, 88% yield) as a pale yellow oil. [a]p? =
—1.75 (c = 3.43, CHCI3). '"H NMR (500 MHz, CDCI3) 5 7.80 (d, J = 8.1 Hz, 2H),
7.34 (d, J = 8.0 Hz, 2H), 5.69 — 5.65 (m, 1H), 4.94 (dq, J = 13.7, 1.8 Hz, 2H),
4.65—-4.62 (m, 1H), 2.45 (s, 3H), 2.05-1.96 (m, 2H), 1.75-1.70 (m, 1H), 1.62
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—1.56 (m, 1H), 1.27 (d, J = 6.4 Hz, 3H). '3C NMR (126 MHz, CDCI3) & 144.6,
137.2,134.7,129.9, 127.9, 115.5, 80.0, 35.8, 29.2, 21.8, 20.9. HRMS (ESI) m/z:
calcd for C13H1803SNa [M+Na]* 277.0869, found 277.0850.

COOEt
= > CcooEt

Diethyl (S)-2-(hex-5-en-2-yl)malonate ((S)-6) (new compound)
[4,9]

To a 200 mL Schlenk flask was added NaH (0.65 g, 60% in mineral oil,
16.14 mmol) at room temperature. The flask was cooled to 0 °C, then diethyl
malonate (4.39 g, 27.40 mmol) in dry DMF (125 mL) was added. After the
resulting mixture was warmed to room temperature and stirred for 30 min, it
was cooled to 0 °C. Subsequently, (R)-hex-5-en-2-yl 4-methylbenzenesulfonate
((R)-5, 3.73 g, 14.67 mmol) and Nal (2.20 g, 14.67 mmol) were added. The
reaction mixture was heated to 60 °C and stirred for 8 h, followed by quenching
with water (50 mL) at 0 °C. The two layers were separated, and the aqueous
layer was extracted with Et2O (50 mL x 3). The ether extracts were combined
with the organic layer, and washed with saturated NH4Cl aqueous solution
(200 mL) and brine (200 mL). The solution was dried over anhydrous Na2SOa4,
and concentrated by rotary evaporation. The residue was purified by column
chromatography on silica gel with an eluent of petroleum ether/ethyl acetate
20:1 to afford diethyl (S)-2-(hex-5-en-2-yl)malonate ((S)-6, 3.02 g, 85% yield)
as a colorless oil. '"H NMR (500 MHz, CDCls) 5 5.71 (ddt, J = 16.8, 10.1, 6.6 Hz,
1H), 4.96 (dq, J = 17.1, 1.8 Hz, 1H), 4.88 (dq, J = 10.2, 1.5 Hz, 1H), 4.12 (q, J
=7.1Hz,4H),3.17 (d, J=7.9 Hz, 1H), 2.22 -2.19 (m, 1H), 2.11 — 2.06 (m, 1H),
1.99 - 1.96 (m, 1H), 1.49 — 1.45 (m, 1H), 1.27 — 1.23 (m, 1H), 1.22 — 1.18 (m,
6H), 0.92 (d, J=6.7 Hz, 3H). *C NMR (126 MHz, CDClI3) 5 169.1, 168.9, 138.4,
114.9, 61.3, 61.2, 57.8, 33.6, 33.0, 31.2, 16.9, 14.3, 14.2. HRMS (ESI) m/z:
calcd for C13H2304 [M+H]* 243.15909, found 243.15937.

S5



COOH

®)
= COOH

(S)-2-(Hex-5-en-2-yl)malonic acid ((S)-7) (new compound) [6]

To a 100 mL Schlenk flask was added diethyl (S)-2-(hex-5-en-2-yl)malonate
((S)-6, 2.09 g, 8.63 mmol) in methanol (13.5 mL) at room temperature. Then,
NaOH (1.15 g, 28.77 mmol) in water (13.5 mL) was added. The reaction
solution was maintained at room temperature for 8 h, followed by an
acidification to pH 2 with aqueous hydrochloric acid solution (1.0 M). The two
layers were separated, and the aqueous layer was extracted with EtOAc (15 mL
x 3). The ester extracts were combined with the organic layer and washed with
brine (30 mL). The solution was dried over anhydrous Na2SOs4 and
concentrated by rotary evaporation. The residue was a white solid, which was
(S)-2-(hex-5-en-2-yl)malonic acid ((S)-7, 1.54 g, 96% yield). "H NMR (500 MHz,
CD3SOCD3) 6 12.64 (br s, 2H), 5.81 — 5.73 (m, 1H), 5.04 — 4.99 (m, 1H), 4.96
—4.93 (m, 1H), 3.08 (d, J = 8.1 Hz, 1H), 2.11 — 1.94 (m, 3H), 1.51 — 1.45 (m,
1H), 1.27 — 1.22 (m, 1H), 0.92 (d, J = 6.7 Hz, 3H). *C NMR (126 MHz,
CD3sSOCDs3) 6 170.3, 170.2, 138.5, 114.9, 57.5, 32.9, 31.9, 30.6, 16.6. HRMS
(ESI) m/z: calcd for CoH1605 [M+H20]* 204.09923, found 204.09829.

)
7T (8)-3-Methylhept-6-enoic acid ((S)-8) (CAS 116370-22-0) [7]

To a 100 mL four-necked flask were added DMSO (28 mL) and H20 (0.1 mL)
at room temperature. After the mixture was heated to 120 °C and stirred for
10 min, (S)-2-(hex-5-en-2-yl)malonic acid ((S)-7, 1.84 g, 9.88 mmol) in DMSO
(19 mL) was added through a syringe. The reaction mixture was maintained for
40 min, followed by quenching with water (10 mL) at room temperature. The
two layers were separated, and the aqueous layer was extracted with EtOAc
(20 mL x 3). The ester extracts were combined with the organic layer and
washed with brine (30 mL). The solution was dried over anhydrous Na2SO4 and

concentrated by rotary evaporation. The residue was purified by column
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chromatography on silica gel with an eluent of dichloromethane/methanol 20:1
to afford (S)-2-(hex-5-en-2-yl) malonic acid ((S)-8, 1.10 g, 78% yield) as a pale
yellow liquid. [a]p?? = —1.83 (¢ = 1.09, CHCI3). "H NMR (500 MHz, CD3SOCD:3)
5 12.00 (br s, 1H), 5.82 — 5.74 (m, 1H), 5.03 — 4.99 (m, 1H), 4.95 — 4.92 (m,
1H), 2.24 —2.20 (m, 1H), 2.06 — 1.96 (m, 3H), 1.87 — 1.80 (m, 1H), 1.40 —1.35
(m, 1H), 1.26 — 1.20 (m, 1H), 0.88 (d, J = 6.6 Hz, 3H). 3C NMR (126 MHz,
CD3sSOCDs) & 173.9, 138.7, 114.7, 41.2, 35.1, 30.7, 29.2, 19.4. HRMS (ESI)
m/z: calcd for CsH1603 [M+H20]* 160.10940, found 160.11054.

(S OH
T (S)-3-Methylhept-6-en-1-ol ((S)-9) (CAS 84717-45-3) [8a]

To a 100 mL four-necked flask was added (S)-3-methylhept-6-enoic acid ((S)-
8, 0.91 g, 6.40 mmol) in Et20 (20 mL) at room temperature, and TiCls (0.65 mL,
1.0 M in CH2Cl2, 0.65 mmol) was added dropwise. After being cooled to 0 °C,
NHs-BHs3 (0.40 g, 12.80 mmol) was added in portions and stirred for 10 min.
After allowing the reaction mixture to warm to room temperature and stir for 4 h,
it was acidified to pH 2 with aqueous hydrochloric acid solution (1 M) at 0 °C.
The two layers were separated, and the aqueous layer was extracted with Et20
(20 mL x 3). The ether extracts were combined with the organic layer, and
washed with brine (30 mL). The solution was dried over anhydrous Na2SO4 and
concentrated by rotary evaporation at low temperature. The residue was
purified by column chromatography on silica gel with an eluent of n-
pentane/Et20 3:2 to afford (S)-3-methylhept-6-en-1-ol ((S)-9, 0.58 g, 71% yield)
as a pale yellow liquid. [a]p?? = —2.50 (¢ = 1.28, CHCI3). '"H NMR (500 MHz,
CDCI3) 5 5.85-5.77 (m, 1H), 5.02 (dd, J=17.1, 1.8 Hz, 1H), 4.93 (dd, J=10.1,
1.9 Hz, 1H), 3.73 — 3.64 (m, 2H), 2.13 - 2.01 (m, 3H), 1.63 — 1.57 (m, 2H), 1.45
—1.38 (m, 2H), 1.24 — 1.20 (m, 1H), 0.91 (d, J = 6.5 Hz, 3H). '3C NMR (126
MHz, CDCIs) & 139.2, 114.4, 61.2, 39.9, 36.4, 31.4, 29.1, 19.6. HRMS (ESI)

m/z: calcd for CeH16ONa [M+Na]* 151.10934, found 151.10876.
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) OTs
W (S)-3-Methylhept-6-en-1-yl 4-methylbenzenesulfonate ((S)-10)
(CAS 1147880-47-4)

Prepared in a similar manner as described for chiral tosylate (S)-5, the
tosylation of (S)-3-methylhept-6-en-1-ol ((S)-9, 0.55 g, 4.29 mmol) with p-TsCl
(0.90 g, 4.72 mmol) afforded (S)-3-methylhept-6-en-1-yl 4-methylbenzene-
sulfonate ((S)-10, 0.96 g, 79% vyield) as a pale yellow oil. "H NMR (500 MHz,
CDCl3) 6 7.79 (d, J =8.3 Hz, 2H), 7.35 (d, J = 8.2 Hz, 2H), 5.76 — 5.71 (m, 1H),
4.99 —4.94 (m, 1H), 4.93 —4.91 (m, 1H), 4.09 — 4.04 (m, 2H), 2.45 (s, 3H), 2.04
—1.94 (m, 2H), 1.70 — 1.65 (m, 1H), 1.55 — 1.53 (m, 1H), 1.48 — 1.42 (m, 1H),
1.32 — 1.28 (m, 1H), 1.20 — 1.16 (m, 1H), 0.82 (d, J = 6.6 Hz, 3H). 3C NMR
(126 MHz, CDCls) 6 144.8, 138.8, 133.3, 129.9, 128.0, 114.6, 69.1, 35.9, 35.7,
31.1, 28.8, 21.8, 19.1. The 'H NMR data for this compound is consistent with
the literature data [8Db].

Scheme S2: Synthesis of chiral tosylate (R)-10.
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T (S)-Hex-5-en-2-ol ((S)-4) (CAS 17397-24-9) [1,2]

In a similar manner as described for chiral alcohol (R)-4, the ring-opening
reaction of (S)-2-methyloxirane ((S)-2, 3.30 g, 56.82 mmol) with
allylmagnesium bromide (85.3 mL, 1.0 M THF, 85.3 mmol) catalyzed by Cul
(1.08 g, 5.69 mmol) afforded (S)-hex-5-en-2-ol ((S)-4, 3.64 g, 64% yield, >99%
ee, determined by 'H NMR of its Mosher ester) as a colorless oil. [a]p?? = +4.43
(c = 5.51, CHCI3). "H NMR (500 MHz, CDCls) & 5.84 (ddt, J = 16.9, 10.2, 6.7
Hz, 1H), 5.08 — 4.96 (m, 2H), 3.84 — 3.81 (m, 1H), 2.19 — 2.12 (m, 2H), 1.58 —
1.54 (m, 2H), 1.36 (br s, 1H), 1.21 (d, J = 6.2 Hz, 3H). 3*C NMR (126 MHz,
CDCl3) & 138.6, 114.9, 67.9, 38.4, 30.3, 23.6. HRMS (ESI) m/z: calcd for
CsH120Na [M+Na]* 123.07804, found 123.0788.

s).OTs
M (S)-Hex-5-en-2-yl 4-methylbenzenesulfonate ((S)-5) (CAS 2715086-
72-7) [3]

In a similar manner as described for chiral tosylate (R)-5, the tosylation of (S)-
hex-5-en-2-ol ((S)-4, 4.26 g, 42.54 mmol) with p-TsCl (8.89 g, 46.80 mmol)
afforded (S)-hex-5-en-2-yl 4-methylbenzenesulfonate ((S)-5, 9.92 g, 92% vyield)
as a colorless oil. [a]p?2 = +4.94 (c = 3.65, CHCI3). '"H NMR (500 MHz, CDCl3)
67.81-7.79 (m, 2H), 7.34 (d, J = 8.1 Hz, 2H), 5.70 — 5.65 (m, 1H), 4.96 — 4.91
(m, 2H), 4.66 — 4.62(m, 1H), 2.45 (s, 3H), 2.05 - 1.96 (m, 2H), 1.76 — 1.69 (m,
1H), 1.62 — 1.55 (m, 2H), 1.27 (d, J = 6.3 Hz, 3H). *C NMR (126 MHz, CDCls)
0 144.6, 137.2, 134.7, 129.9, 127.9, 115.5, 80.0, 35.8, 29.2, 21.8, 20.9. HRMS
(ESI) m/z: calcd for C13H1903S [M+H]* 255.10494, found 255.10446.

S9



COOEt

= > cookt

Diethyl (R)-2-(hex-5-en-2-yl)malonate ((R)-6) (new compound)
[4,9]

In a similar manner as described for alkenyl malonate (S)-6, the reaction of (S)-

hex-5-en-2-yl 4-methylbenzenesulfonate ((S)-5, 3.73 g, 14.67 mmol) with

diethyl malonate (4.39 g, 27.40 mmol) afforded diethyl (R)-2-(hex-5-en-2-yl)

malonate ((R)-6, 3.13 g, 88% vyield) as a colorless oil. '"H NMR (500 MHz, CDCIz)
6 5.78 (ddt, J=16.9, 10.2, 6.6 Hz, 1H), 5.04 — 4.94 (m, 2H), 4.20 (q, J = 7.1 Hz,

4H), 3.24 (d, J = 7.9 Hz, 1H), 2.29 — 2.27 (m, 1H), 2.22 — 2.15 (m, 1H), 2.06 —

2.02 (m, 1H), 1.57 —1.52 (m, 1H), 1.32 -1.29 (m, 1H), 1.27 (d, J=7.2, 1.4 Hz,

6H), 1.00 (d, J=6.8 Hz, 3H). *C NMR (126 MHz, CDClI3) d 169.1, 168.9, 138.4,

114.9, 61.3, 61.2, 57.8, 33.6, 33.0, 31.2, 16.9, 14.3, 14.2. HRMS (ESI) m/z:

calcd for C13H2304 [M+H]* 243.15909, found 243.16007.

COOH

R),
= Y COOH

(R)-2-(Hex-5-en-2-yl)malonic acid ((R)-7) (new compound) [6]
In a similar manner as described for alkenyl malonic acid (S)-7, the hydrolysis
of diethyl (R)-2-(hex-5-en-2-yl)malonate ((R)-6, 1.97 g, 8.13 mmol) with NaOH
(1.08 g, 27.10 mmol) afforded diethyl (R)-2-(hex-5-en-2-yl) malonic acid ((R)-7,
1.36 g, 90% yield). "H NMR (500 MHz, CDCl3) & 11.07 (br s, 2H) 5.91 (ddt, J =
16.9, 10.2, 6.6 Hz, 1H), 5.16 (dd, J = 17.1, 1.8 Hz, 1H), 5.10 (dd, J=10.2, 1.8
Hz, 1H), 3.52 (d, J = 7.2 Hz, 1H), 2.46 — 2.40 (m, 1H), 2.33 — 2.21 (m, 1H), 2.20
- 215 (m, 1H), 1.78 = 1.71 (m, 1H), 1.56 — 1.48 (m, 1H), 1.20 (d, J = 6.8 Hz,
3H). *C NMR (126 MHz, CDCl3) 5 173.9, 173.6, 137.9, 115.3, 56.7, 33.5, 33.4,
31.2, 16.8. HRMS (ESI) m/z: calcd for CoH1605 [M+H20]* 204.09923, found
204.09978.
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A co0m
: (R)-3-Methylhept-6-enoic acid ((R)-8) (CAS 161029-67-0) [7]

In a similar manner as described for alkenyl acid (S)-8, the decarboxylation of
(R)-2-(hex-5-en-2-yl)malonic acid ((R)-7, 1.35 g, 7.25 mmol) with DMSO (35 mL)
and H20 (0.1 mL) afforded (R)-3-methylhept-6-enoic acid ((R)-8, 0.85 g, 82%
yield) as a colorless oil. [a]p?? =+0.20 (c = 2.05, CHCI3). '"H NMR (500 MHz,
CDCls) & 11.70 (s, 1H), 5.80 (ddt, J=16.9, 10.2, 6.6 Hz, 1H), 5.78 (dd, J = 16.9,
1.6 Hz, 1H), 4.96 (dd, J = 10.2, 1.6 Hz, 1H), 2.37 (dd, J = 15.1, 6.0 Hz, 1H),
2.17 (dd, J =15.1, 8.1 Hz, 1H), 2.15 - 2.06 (m, 2H), 2.04 — 1.96 (m, 1H), 1.45
—1.43 (m, 1H), 1.35 - 1.28 (m, 1H), 0.99 (d, J = 6.7 Hz, 3H). '3C NMR (126
MHz, CDCls) 6 180.0, 138.6, 114.8, 41.6, 35.9, 31.3, 29.8, 19.6. HRMS (ESI)
m/z: calcd for CsH1502 [M+H]" 143.10666, found 143.1060.

AN OH

' (R)-3-Methylhept-6-en-1-ol ((R)-9) (CAS 237431-14-0) [8]

In a similar manner as described for alkenyl alcohol (S)-9, the reduction of (R)-
3-methylhept-6-enoic acid ((R)-8, 0.76 g, 5.34 mmol) with NH3-BH3 (0.33 g,
10.68 mmol) afforded (R)-3-methylhept-6-en-1-ol ((R)-9, 0.48 g, 70% yield) as
a pale yellow oil. [a]p?? = +0.38 (¢ = 2.13, CHCIz). '"H NMR (500 MHz, CDCI3) &
5.76 — 5.69 (m, 1H), 4.93 (dd, J=17.1, 1.7 Hz, 1H), 4.86 (dd, J = 10.3, 1.3 Hz,
1H), 3.62 — 3.56 (m, 2H), 2.04 — 1.95 (m, 3H), 1.56 — 1.50 (m, 2H), 1.36 — 1.30
(m, 2H), 1.19 — 1.14 (m, 1H), 0.83 (d, J = 6.5 Hz, 3H). *C NMR (126 MHz,
CDCls) 6 139.2, 114.3, 61.0, 39.9, 36.3, 31.3, 29.1, 19.5. HRMS (ESI) m/z:
calcd for CsH16ONa [M+Na]* 151.10934, found 151.10875.
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(R)-3-Methylhept-6-en-1-yl 4-methylbenzenesulfonate ((R)-10)
(CAS 1147880-36-1)

In a similar manner as described for chiral tosylate (S)-5, the tosylation of (R)-
3-methylhept-6-en-1-ol ((R)-9, 0.39 g, 3.04 mmol) with p-TsCl (0.64 g,
3.34 mmol) afforded (R)-3-methylhept-6-en-1-yl 4-methylbenzenesulfonate
((R)-10, 0.60 g, 70% yield) as a pale yellow oil. '"H NMR (500 MHz, CDCl3) &
7.79 (d, J = 8.1 Hz, 2H), 7.35 (d, J = 8.2 Hz, 2H), 5.73 (ddt, J = 16.9, 10.2, 6.6
Hz, 1H), 4.96 (dd, J=17.1, 1.8 Hz, 1H), 4.93 (dd, J = 10.2, 1.7 Hz, 1H), 4.09 —
4.03 (m, 2H), 2.45 (s, 3H), 2.04 — 1.94 (m, 2H), 1.71 - 1.65 (m, 1H), 1.57 — 1.53
(m, 1H), 1.48 = 1.41 (m, 1H), 1.35-1.26 (m, 1H), 1.19-1.11 (m, 1H), 0.82 (d,
J=6.6 Hz, 3H). '*C NMR (126 MHz, CDClI3) & 144.8, 138.8, 133.3, 129.9, 128.0,
114.6, 69.1, 35.9, 35.7, 31.1, 28.8, 21.8, 19.1. HRMS (ESI) m/z: calcd for
C15H2103S [M-H]* 281.12059, found 281.12079.

Scheme S3: Synthesis of aggregation pheromone (4R,8R)-1.

R)-11
(510 (R) _ ®) (R) RuCl3, NalOy4 o7 (R) (R)
Mg, lp, THF, reflux, 2 h /\/Y\/\‘/\ MeCN, H,O, rt, 1.5 h /\/Y\/\‘/\
Li,CuCly, THF, -70°Ctort, 8 h 88% yield

(5R,9R)-12 (4R,8R)-1

80% yield

R) R
WY\A‘/\ (5R,9R)-5,9-Dimethylundec-1-ene  ((5R,9R)-12) (CAS
110595-31-8) [9]

To a 50 mL Schlenk flask was added Mg (0.24 g, 10.0 mmol) and Iz (catalytic
amount) in dry THF (6 mL) at room temperature, and (R)-1-bromo-2-
methylbutane ((R)-11, 0.20 g, 1.34 mmol) was added. The resulting mixture was

heated cautiously to initiate the reaction, and maintained simmering until the
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solution became colorless. Subsequently, (R)-1-bromo-2-methylbutane ((R)-11,
0.80 g, 5.34 mmol) was added slowly. The reaction mixture was refluxed for 2 h
and diluted with dry THF (6 mL) to afford (R)-(2-methylbutyl)magnesium

bromide.

To another 50 mL Schlenk flask was added chiral tosylate (S)-10 (0.47 g,
1.67 mmol) and dry THF (10 mL) at room temperature. After being cooled to
-70 °C, Li2CuCls (5.0 mL, 0.1 M in THF, 0.50 mmol) was added and stirred for
20 min. Subsequently, the new prepared (R)-(2-methylbutyl)magnesium
bromide was added dropwise over 1 h. After allowing the reaction mixture to
warm to room temperature and stir for 8 h, the reaction was quenched with
water (20 mL). The two layers were separated, and the aqueous layer was
extracted with EtOAc (30 mL x 3). The ester extracts were combined with the
organic layer, and was washed with brine (100 mL). The solution was dried over
anhydrous Na2S0O4 and concentrated by a rotary evaporator. The residue was
purified by column chromatography on silica gel with an eluent of n-pentane to
afford (5R,9R)-5,9-dimethylundec-1-ene ((5R,9R)-12, 0.24 g, 80% vyield) as a
colorless oil. [a]p?? = —4.41 (¢ = 1.36, CHCIz). "H NMR (500 MHz, CDCls) 5 5.81
(ddt, J=17.0, 10.2, 6.6 Hz, 1H), 5.00 (dq, J = 17.1, 1.7 Hz, 1H), 4.92 (dq, J =
10.1, 1.4 Hz, 1H), 2.11 - 1.99 (m, 2H), 1.42 - 1.38 (m, 2H), 1.33 — 1.24 (m, 6H),
1.21 = 1.17 (m, 1H), 1.13 — 1.07 (m, 3H), 0.87 — 0.83 (m, 9H). '3C NMR (126
MHz, CDCl3) & 139.7,114.1, 37.5, 37.1, 36.4, 34.6, 32.5, 31.6, 29.6, 24.6, 19.7,
19.4, 11.6. HRMS (ESI) m/z: calcd for CisHzz [M+H]* 183.21254, found
183.21073.

) ®)
S e (4R,8R)-4,8-Dimethyldecanal ((4R,8R)-1) (CAS 85880-35-9)
[10]
To a 10 mL Schlenk flask were added NalO4 (69.0 mg, 0.32 mmol) and a
solution (CH3CN/H20 6:1, 3.0 mL) at room temperature. Subsequently, chiral

olefine (5R,9R)-12 (30.0 mg, 0.16 mmol) and RuCls (1.3 mg, 0.006 mmol) were
S13



added and the mixture stirred for 1.5 h. The reaction was quenched with
saturated Na2S203 aqueous solution (5 mL). The two layers were separated,
and the aqueous layer was extracted with Et2OAc (10 mL x 3). The ester
extracts were combined with the organic layer and washed with brine (30 mL).
The solution was dried over anhydrous Na2S0O4 and concentrated by rotary
evaporation. The residue was a colorless liquid, which was (4R,8R)-4,8-
dimethyldecanal ((4R,8R)-1, 26.0 mg, 88% vyield). [a]p?*? = —5.00 (c = 1.36,
CHCIs). Lit.[11] [a]p?® = -5.6 (c = 1.1, CHCIz). "TH NMR (500 MHz, CDClI3) 5 9.78
(t, J=2.0Hz, 1H), 2.43 (tdd, J= 8.9, 6.0, 2.0 Hz, 2H), 1.69 — 1.64 (m, 1H), 1.46
-1.41 (m, 2H), 1.35 - 1.25 (m, 6H), 1.14 — 1.06 (m, 3H), 0.89 — 0.84 (m, 9H).
13C NMR (126 MHz, CDCls) & 203.2, 41.9, 37.2, 37.0, 34.6, 32.6, 29.7, 29.1,
245, 19.5, 19.4, 11.6. HRMS (ESI) m/z: calcd for C12H2602Na [M+H20+Na]*
225.18250, found 225.18239.

Scheme S4: Synthesis of aggregation pheromone (4R,8S)-1.

)
BrM ($)11
(S)-10 = = R) ) RuCls, NalO,4 o7 R) )
Mg, Iy, THF, reflux, 2 h /\/Y\/\:/\ MeCN, H,O, rt, 1.5 h /\/Y\/\:/\
Li,CuCly, THF, -70°Ctort, 8 h 89% yield
75% yield (5R,95)-12 (4R,8S)-1
R S

(5R,9S5)-5,9-Dimethylundec-1-ene  ((5R,9S5)-12) (CAS
110595-35-2)
In a similar manner as described for chiral olefine (5R,9R)-12, the coupling of
chiral tosylate (S)-10 (0.47 g, 1.67 mmol) with (S)-(2-methylbutyl)magnesium
bromide derived from Mg (0.24 g, 10.0 mmol) and (S)-1-bromo-2-methylbutane
((S-11, 1.00 g, 6.67 mmol) afforded ((5R,9S)-5,9-dimethylundec-1-ene
((5R,95)-12, 0.23 g, 75% yield) as a colorless liquid. [a]p?? = +4.44 (c = 1.62,
CHCIs)."H NMR (500 MHz, CDCl3) & 5.84 — 5.79 (m, 1H), 5.00 (dq, J = 17.1,
1.7 Hz, 1H), 4.94 —4.91 (m, 1H), 2.09 — 2.02 (m, 2H), 1.42 — 1.37 (m, 2H), 1.34
-1.24 (m, 6H), 1.21 = 1.17 (m, 1H), 1.14 — 1.05 (m, 3H), 0.87 — 0.84 (m, 9H).
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3C NMR (126 MHz, CDCls) 5 139.7, 114.1, 37.5, 37.1, 36.4, 34.6, 32.5, 31.6,
29.6, 24.6, 19.7, 194, 11.6. HRMS (ESI) m/z: calcd for CizHzz [M+H]*
183.21073, found 183.21254.

(R) (S)
TN T T (4R ,8S)-4,8-Dimethyldecanal (4R,8S)-1) (CAS 85880-37-1)

In a similar manner as described for pheromone (4R,8R)-1, the oxidation of
(5R,9S)-5,9-dimethylundec-1-ene ((5R,9S5)-12, 182.0 mg, 1.0 mmol) with
NalO4 (432.0 mg, 2.0 mmol) and RuCls (7.0 mg, 0.035 mmol) afforded (4R,8S)-
4,8-dimethyldecanal ((4R,8S)-1, 164.0 mg, 89% yield) as a colorless liquid.
[a]p?? = + 2.75 (c = 1.60, CHCI3). Lit. [12] [a]p?® = +5.1 (c = 6.00, CHCI3). 'H
NMR (500 MHz, CDCls) & 9.77 (t, J = 1.9 Hz, 1H), 2.45 — 2.40 (m, 2H), 1.69 —
1.64 (m, 1H), 1.46 — 1.41 (m, 2H), 1.35 — 1.25 (m, 6H), 1.14 — 1.06 (m, 3H),
0.89-0.84 (m, 9H). '3C NMR (126 MHz, CDCls) 5 203.2, 41.9, 37.1, 36.9, 34.5,
32.5,29.7,29.1, 24.5,19.5, 19.4, 11.5. HRMS (ESI) m/z: calcd for C11H220 [[M-
CHs+H]]* 170.16652, found 170.16633.

Scheme S5: Synthesis of aggregation pheromone (4S,8R)-1.

N EA_OTs (1) (R)-11, Mg, I, THF, reflux, 2 h; then Li,CuCly, THF, -70°C to rt, 8 h o7 & ®)

(2) RuCls, NalO,4, MeCN, H,0, rt, 1.5 h
(R)-10 71% yield two steps (4S,8R)-1

(S) (R)
T T T (48,8R)-4,8-Dimethyldecanal (4S,8R)-1) (CAS 85880-38-2)

In a similar manner as described for chiral olefine (5R,9R)-12, the coupling of
chiral tosylate (R)-10 (0.47 g, 1.67 mmol) with (R)-(2-methylbutyl)magnesium
bromide derived from Mg (0.24 g, 10.0 mmol) and (R)-1-bromo-2-methylbutane
((R)-11,1.00 g, 6.67 mmol) afforded ((6S,9R)-5,9-dimethylundec-1-ene (0.23 g)
as a colorless liquid. HRMS (ESI) m/z: calcd for C1zHzs [M]* 183.2029, found

182.2024.
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Then, similarly to the procedure for pheromone (4R,8R)-1, the oxidation of
(56S,9R)-5,9-dimethylundec-1-ene (92.0 mg, 0.5 mmol) with NalO4 (216.0 mg,
1.0 mmol) and RuCls (4.0 mg, 0.0175 mmol) afforded (4R,8S)-4,8-
dimethyldecanal ((4S,8R)-1, 87.0 mg, 71% yield two steps) as a colorless liquid.
"H NMR (500 MHz, CDCl3) 8 9.76 (t, J = 2.4 Hz, 1H), 2.42 — 2.37 (m, 1H), 2.25
—2.20 (m, 1H), 1.45 - 1.40 (m, 1H), 1.35 - 1.32 (m, 2H), 1.31 — 1.28 (m, 6H),
1.15-1.08 (m, 3H), 0.89 — 0.84 (m, 9H). *C NMR (126 MHz, CDCls) & 203.4,
41.9,37.4,36.8, 34.5, 32.5, 29.6, 29.0, 24.5, 19.5, 19.3, 11.5. HRMS (ESI) m/z:
calcd for C12H240Na [M+Na]* 207.1719, found 207.1720.

Scheme S6: Synthesis of aggregation pheromone (4S,8S)-1.

Br/\(;S)/\ (S)-11
(R110 - I RuCl a0, O
Mg, I, THF, reflux, 2 h MeCN, H,O, rt, 1.5 h ©
LioCuCl, THF, -70°Cto rt, 8 h 92% yield
82% yield (5S,95)-12 (45,85)1
P e U N
: (5S,95)-5,9-Dimethylundec-1-ene  (5S5,95-12) (new
compound)

In a similar manner as described for chiral olefine (5R,9R)-12, the coupling of
chiral tosylate (R)-10 (0.47 g, 1.67 mmol) with (S)-(2-methylbutyl)magnesium
bromide derived from Mg (0.24 g, 10.0 mmol) and (S)-1-bromo-2-
methylbutane ((S)-11, 1.00 g, 6.67 mmol) afforded (5S,9R)-5,9-dimethylundec-
1-ene ((6S,95)-12, 0.25 g, 82% vyield) as a colorless liquid. [a]p?? = +4.80 (c =
1.00, CHCI3)."H NMR (500 MHz, CDCl3) 5 5.82 (ddt, J = 16.9, 10.2, 6.7 Hz, 1H),
5.00 (dq, J=17.1, 1.7 Hz, 1H), 4.92 (dq, J = 10.1, 1.4 Hz, 1H), 2.11 - 1.99 (m,
2H), 1.42 - 1.38 (m, 2H), 1.32 — 1.26 (m, 6H), 1.21 = 1.18 (m, 1H), 1.12 - 1.04
(m, 3H), 0.87 — 0.84 (m, 9H). *C NMR (126 MHz, CDClz) 8 139.7, 114.1, 37.5,
37.1,36.4,34.6,32.5,31.6,29.6, 24.6, 19.7, 19.4, 11.6. HRMS (ESI) m/z: calcd
for C13Hz6 [M]* 182.20290, found 182.20235.
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PPN AN

o © " (45,85)-4,8-Dimethyldecanal ((4S,8S)-1) (CAS 85880-36-0)

In a similar manner as described for pheromone (4R,8R)-1), the oxidation of
(5S,95)-5,9-dimethylundec-1-ene ((5S,9S5)-12, 92.0 mg, 0.5 mmol) with NalO4
(216.0 mg,1.0 mmol), and RuCls (4.0 mg, 0.0175 mmol) afforded (4S,8S)-4,8-
dimethyldecanal ((4S,8S)-1, 85.0 mg, 92% yield) as a colorless liquid. [a]p? =
+18.00 (c = 1.00, CHCIs). Lit.[13] [a]p?® = +7.20 (c = 4.17, CHCI3). "H NMR (500
MHz, CDCl3) 6 9.78 (d, J = 3.0 Hz, 1H), 2.45 — 2.40 (m, 2H), 1.69 — 1.64 (m,
1H), 1.46 — 1.40 (m, 2H), 1.35 - 1.22 (m, 6H), 1.11 - 1.05 (m, 3H), 0.89 — 0.84
(m, 9H). 3C NMR (126 MHz, CDCl3z) 6 203.2, 41.9, 37.2, 37.0, 34.5, 32.6, 29.7,
29.1,24.5,19.5, 19.4, 11.6. HRMS (ESI) m/z: calcd for C12H230KNa [M+K+Na-
H]* 245.12782, found 245.12840.

3. Research on the optical purity of chiral alcohols (R)-
and (S)-4

Scheme S7: Synthesis of Mosher esters 14,15, and16.

0 o
NN Cl)ge}CFs DMAP, Et;N, DCM \/\)\O)K(C%

g R "OCH
OH P’ OCH, 0°Ctort, 4h Ph
rac-4 13 75% yield 14
o} = O
PR (SL.CF | EtN, : CFs
_ : . o ) CFy DMAP, Et;N, DCM N0 {00k,
OH Ph™ OCH,3 0°Ctort 4h Ph
(S)-4 13 76% yield, >99% ee 15
o 0o
/\/\(‘T/ .ol )$S)/CF3 DMAP, Et;N, DCM \/\/L CF;3
RO
oH PH "OCH, 0°Ctort,4h " "L OCHs
0, i 0,
(R)-4 13 73% yield, >99% ee 16
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0]

\/\)\ CF3
0" R "OCH,4
Ph

phenylpropanoate 14 (new compound) [14,15]

Hex-5-en-2-yl (R)-3,3,3-trifluoro-2-methoxy-2-

To a 10 mL Schlenk flask were added hex-5-en-2-ol (rac-4, 20.0 mg, 0.2 mmol)
and DCM (2 mL) at room temperature. After being cooled to 0 °C, DMAP
(24.0 mg, 0.2 mmol) and EtsN (101.0 mg, 1.0 mmol) were added and stirred for
5 min. Subsequently, (S)-MTPACI (13, 51.0 mg, 0.2 mmol) was added. After
allowing the reaction solution to warm to room temperature and maintain for 4 h,
the reaction was quenched with water (2 mL). The two layers were separated,
and the aqueous layer was extracted with DCM (2 mL x 3). The
dichloromethane extracts were combined with the organic layer and washed
with brine (6 mL). The solution was dried over anhydrous Na2SOs and
concentrated by rotary evaporation at low temperature. The residue was
purified by column chromatography on silica gel with an eluent of petroleum
ether/ethyl acetate 10:1 to afford hex-5-en-2-yl (R)-3,3,3-trifluoro-2-methoxy-2-
phenylpropanoate (14, 47.0 mg, 75% vyield) as a colorless oil. 'H NMR (500
MHz, CDCl3) & 7.55 — 7.52 (m, 2H), 7.42 — 7.39 (m, 3H), 5.79 — 5.77 (m, 1H),
5.17 —=5.15 (m, 1H), 5.04 — 4.93 (m, 2H), 3.57 — 3.55 (m, 3H), 2.10 — 2.08 (m,
1H), 1.97 = 1.95 (m, 1H), 1.82 — 1.74 (m, 1H), 1.64 — 1.60 (m, 1H), 1.35(d, J =
6.3 Hz, 1.5H), 1.27 (d, J = 6.3 Hz, 1.5H). '*C NMR (126 MHz, CDClI3) & 166.3,
166.2, 137.40, 137.37, 132.7, 132.5, 129.7, 128.52, 128.50, 127.5, 127.4,
123.5 (g, J = 293.5 Hz), 115.6, 115.5, 84.6 (q, J = 27.2 Hz), 73.7, 73.5, 55.5,
34.93, 34.90, 29.6, 29.4, 19.9, 19.6. '9F NMR (471 MHz, CDCls) d -71.41, -
71.43. HRMS (ESI) m/z: calcd for C16H1903F3 [M]* 316.1286, found 316.1280.
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MO > ‘,F'F3
Jhrphoc“ (S)-Hex-5-en-2-yl (R)-3,3,3-trifluoro-2-methoxy-2-

phenylpropanoate 15 (new compound)

In a similar manner as described for Mosher ester 14, the esterification of (S)-
hex-5-en-2-ol ((S)-4, 20.0 mg, 0.2 mmol) with (S)-MTPACI (13, 51.0 mg,
0.2mmol) afforded (S)-hex-5-en-2-yl  (R)-3,3,3-trifluoro-2-methoxy-2-
phenylpropanoate (15, 48.0 mg, 76% yield) as a colorless oil. '"H NMR (500
MHz, CDCls) & 7.53 (dd, J = 7.1, 3.0 Hz, 2H), 7.42 - 7.39 (m, 3H), 5.81 — 5.75
(m, 1H), 5.17 —=5.14 (m, 1H), 5.04 — 4.98 (m, 2H), 3.55 (d, J = 1.3 Hz, 3H), 2.12
—2.08 (m, 2H), 1.82 — 1.79 (m, 1H), 1.68 — 1.64 (m, 1H), 1.27 (d, J = 6.3 Hz,
3H). 3C NMR (126 MHz, CDCIls) d 166.3, 137.4, 132.5, 129.7, 128.5, 127.5,
127.0, 123.5 (q, J = 288.8 Hz), 115.6, 84.8 (q, J = 27.7 Hz), 73.7, 55.5, 34.9,
29.6, 19.6. °F NMR (471 MHz, CDCl3) & -71.44. HRMS (ESI) m/z: calcd for
C16H1903F3 [M]* 316.1286, found 316.1292.

\/\/L C
F3
X (R) O)%f

"OCHj

Ph (R)-Hex-5-en-2-yl (R)-3,3,3-trifluoro-2-methoxy-2-

phenylpropanoat 16 (new compound)

In a similar manner as described for Mosher ester 14, the esterification of (R)-
hex-5-en-2-ol ((R)-4, 20.0 mg, 0.2 mmol) with (S)-MTPACI (13, 51.0 mg,
0.2 mmol) afforded (R)-hex-5-en-2-yl (R)-3,3,3-trifluoro-2-methoxy-2-
phenylpropanoate (16, 46.0 mg, 73% yield) as a colorless oil. "H NMR (500
MHz, CDCls) & 7.55 (dd, J = 6.9, 3.0 Hz, 2H), 7.41 - 7.39 (m, 3H), 5.75 — 5.68
(m, 1H), 519 - 5.13 (m, 1H), 4.97 — 4.94 (m, 2H), 3.57 (d, J = 1.5 Hz, 3H), 2.04
-1.93 (m, 2H), 1.78 = 1.71 (m, 1H), 1.64 — 1.58 (m, 1H), 1.35 (d, J = 6.3 Hz,
3H). 3C NMR (126 MHz, CDCIls) d 166.2, 137.4, 132.7, 129.7, 128.5, 127 .4,
127.0, 123.6 (q, J = 289.3 Hz), 115.5, 84.5 (q, J = 27.7 Hz), 73.5, 55.5, 34.9,
29.4, 19.9. '°F NMR (471 MHz, CDCI3) & -71.41. HRMS (ESI) m/z: calcd for

C16H1803F3 [M-H]* 315.12026 found 315.12035.
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4. 'H and 3C NMR spectra of the products
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Figure S2: '3C NMR Spectrum of (R)-hex-5-en-2-ol ((R)-4) (126 MHz, CDCIs).
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Figure S3: "H NMR Spectrum of (R)-hex-5-en-2-yl 4-methylbenzenesulfonate

((R)-5) (500 MHz, CDCls).
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Figure S5: '"H NMR Spectrum of diethyl (S)-2-(hex-5-en-2-yl) malonate ((S)-6)

(500 MHz, CDCl3).
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Figure S6: '3C NMR Spectrum of diethyl (S)-2-(hex-5-en-2-yl) malonate ((S)-
6) (126 MHz, CDCla).
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Figure S7: '"H NMR Spectrum of (S)-2-(hex-5-en-2-yl) malonic acid ((S)-7) (500
MHz, CD3SOCD:3).

-
5 P M NN e MO eME NS ® T O TO2MON NSNS ®mn Cmvemmno =g
g R R R R R R RN E DSl S i SRR g SR Bl R B R bR el g g
o R B i e B B B B el T B R B R A R
B R E R Rk L D L D R R i I g g B L g R
AR RS R S P B R NN et

el —————

COOH

S
= COOH

. L

O 4 I tid

S ISR =3 =1 SSo

= P —_ P ==
T T T T T T T T
14 12 10 8 6 4 2 0

£1 (ppm)

Figure S8: '3C NMR Spectrum of (S)-2-(hex-5-en-2-yl) malonic acid ((S)-7)
(126 MHz, CD3SOCD3).
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Figure S9: '"H NMR Spectrum of (S)-3-methylhept-6-enoic acid ((S)-8) (500

MHz, CDsSOCD3).
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Figure S11: '"H NMR Spectrum of (S)-3-methylhept-6-en-1-ol ((S)-9) (500 MHz,

CDCla).
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Figure S13: 'H NMR Spectrum of (S)-3-methylhept-6-en-1-yl 4-
methylbenzenesulfonate (( ) 10) (500 MHz, CDCI

£1 (ppm)

Figure S14: 'C NMR Spectrum of (S)-3-methylhept-6-en-1-yl 4-
methylbenzenesulfonate ((S)-10) (126 MHz, CDCla).
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Figure S15: "H NMR Spectrum of (S)-hex-5-en-2-ol ((S)-4) (500 MHz, CDCl3).
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Figure S17: '"H NMR Spectrum of (S)-hex-5-en-2-yl 4-methylbenzenesulfonate

((S)-5) (500 MHz, CDCla).
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2-(hex-5-en-2-yl) malonate ((R)-

Figure $19: 'H NMR Spectrum of diethyl (R)

6) (500 MHz, CDCla).
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Figure S20: '3C NMR Spectrum of (R)-2-(hex-5-en-2-yl) malonate ((R)-6) (126

MHz, CDCls).
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2-(hex-5-en-2-yl) malonic acid

Figure S21: 'H NMR Spectrum of diethyl (R)

((R)-7) (500 MHz, CDCls).
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Figure S22: '3C NMR Spectrum of (R)-2-(hex-5-en-2-yl) malonic acid ((R)-7)

(126 MHz, CDCl3).

88L9T —

OLITE~,
wree
oi,mmv

Y0L'9S —

906°9L /

€0AD 191'LL —7
m:\.rh\

€TESIT —

9€6°LET —

LTOELT~,
z06'€L1

COOH

R)

COOH

(RY7

£1 (ppm)

S30



Figure S23: "H NMR Spectrum of (R)-3-methylhept-6-enoic acid ((R)-8) (500

MHz, CDCls).
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Figure S24: '3C NMR Spectrum of (R)-3-methylhept-6-enoic acid ((R)-8) (126

MHz, CDCls).
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Figure S25: "H NMR Spectrum of (R)-3-methylhept-6-en-1-ol ((R)-9) (500
MHz, CDClIs).
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Figure S26: '3C NMR Spectrum of (R)-3-methylhept-6-en-1-ol ((R)-9) (126
MHz, CDCl3).
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Figure S27: 'H NMR Spectrum of (R)-3-methylhept-6-en-1-yl 4-
methylbenzenesulfonate ((R)-10) (500 MHz, CDClIs3).

R)
/\/\()/\/ OTs

(R)-10

-

f
|

A I
Ly T 2 1 P 5 LN
S S o Qo < o aQ 232293 S
s = g 3% g 5 % E83%% E

£1 (ppm)

Figure S28: '°C NMR Spectrum of (R)-3-methylhept-6-en-1-yl 4-
methylbenzenesulfonate ((R)-10) (126 MHz, CDClI3).
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Figure S29: "H NMR Spectrum of (5R,9R)-5,9-dimethylundec-1-ene ((5R,9R)-

12) (500 MHz, CDCl3).
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Figure S30: '3C NMR Spectrum of (5R,9R)-5,9-dimethylundec-1-ene ((5R,9R)-

12) (126 MHz, CDCl3).
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Figure S31: 'H NMR Spectrum of (4R,8R)-4,8-dimethyldecanal ((4R,8R)-1)

(500 MHz, CDCl3).
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Figure S32: '3C NMR Spectrum of (4R,8R)-4,8-dimethyldecanal ((4R,8R)-1)

(126 MHz, CDCl3).
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Figure S33: "H NMR Spectrum of (5R,9S)-5,9-dimethylundec-1-ene ((5R,9S)-

12) (500 MHz, CDCl3).
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Figure S34: '3C NMR Spectrum of (5R,9S)-5,9-dimethylundec-1-ene ((5R,9S)-

12) (126 MHz, CDCl3).
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Figure S35: '"H NMR Spectrum of (4R,8S)-4,8-dimethyldecanal ((4R,8S)-1)

(500 MHz, CDCl3).
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(126 MHz, CDCls).
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Figure S37: '"H NMR Spectrum of (4S,8R)-4,8-dimethyldecanal ((4S,8R)-1)

(500 MHz, CDCl3).
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Figure S38: 3C NMR Spectrum of (4S,8R)-4,8-dimethyldecanal ((4S,8R)-1)

(126 MHz, CDCl3).
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Figure $39: 'H NMR Spectrum of (5S,9S)-5,9-dimethylundec-1-ene ((5S,9S)-
12) (500 MHz, CDCl3).
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Figure S40: '3C NMR Spectrum of (5S,9S)-5,9-dimethylundec-1-ene ((5S,9S)-
12) (126 MHz, CDCl3).
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Figure S41: '"H NMR Spectrum of (4S,8S)-4,8-dimethyldecanal ((4S,8S)-1)
(500 MHz, CDCls).
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Figure S42: 3C NMR Spectrum of (4S,8S)-4,8-dimethyldecanal ((4S,8S)-1)
(126 MHz, CDCl3).
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Figure S43: "H NMR Spectrum of hex-5-en-2-yl (2R)-3,3,3-trifluoro-2-methoxy-

2-phenylpropanoate (14) (500 MHz, CDCls).
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3C NMR Spectrum of hex-5-en-2-yl (2R)-3,3,3-trifluoro-2-
methoxy-2-phenylpropanoate (14) (126 MHz, CDCls).
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Figure S45: '"F NMR Spectrum of hex-5-en-2-yl (2R)-3,3,3-trifluoro-2-
methoxy-2-phenylpropanoate (14) (417 MHz, CDClIzs).
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Figure S46: 'H NMR Spectrum of (S)-hex-5-en-2-yl (R)-3,3,3-trifluoro-2-
methoxy-2-phenylpropanoate (15) (500 MHz, CDCls).
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Figure S47: '3C NMR Spectrum of (S)-hex-5-en-2-yl (R)-3,3,3-trifluoro-2-
methoxy-2-phenylpropanoate (15) (126 MHz, CDClI3).
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Figure S48: "F NMR Spectrum of (S)-hex-5-en-2-yl (R)-3,3,3-trifluoro-2-
methoxy-2-phenylpropanoate (15) (417 MHz, CDClI3).
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'H NMR Spectrum of (R)-hex-5-en-2-yl (R)-3,3,3-trifluoro-2-

methoxy-2-phenylpropanoat (16) (500 MHz, CDClIs).

Figure S49:
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Figure S51: '°F NMR Spectrum of (R)-hex-5-en-2-yl (R)-3,3,3-trifluoro-2-
methoxy-2-phenylpropanoat (16) (417 MHz, CDClIs).
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