

Supporting Information

for

Facile one-pot reduction of β-nitrostyrenes to phenethylamines using sodium borohydride and copper(II) chloride

Laura D'Andrea and Simon Jademyr

Beilstein J. Org. Chem. 2025, 21, 39-46. doi:10.3762/bjoc.21.4

¹H and ¹³C NMR spectra of the synthesized compounds, the optimization table, and ESI-MS spectra for the synthesis of 4b

License and Terms: This is a supporting information file under the terms of the Creative Commons Attribution License (https://creativecommons.org/ licenses/by/4.0). Please note that the reuse, redistribution and reproduction in particular requires that the author(s) and source are credited and that individual graphics may be subject to special legal provisions.

Table of Contents

2-Phenylethan-1-amine hydrochloride (1b)	S1
¹ H NMR spectrum	S1
¹³ C NMR spectrum	S2
2-(4-Methoxyphenyl)ethan-1-amine hydrochloride (2b)	S 3
¹ H NMR spectrum	S3
¹³ C NMR spectrum	S4
1-(2,5-Dimethoxyphenyl)propan-2-amine hydrochloride (3b)	S 5
¹ H NMR spectrum	S5
¹³ C NMR spectrum	S6
2-(2,5-Dimethoxyphenyl)ethan-1-amine hydrochloride (4b)	S 7
¹ H NMR spectrum	S7
¹³ C NMR spectrum	S8
2-(2,5-Dimethoxy-4-methylphenyl)ethan-1-amine hydrochloride (5b)	S 9
¹ H NMR spectrum	S9
¹³ C NMR spectrum	S10
2-(2,5-Dimethoxy-4-(trifluoromethyl)phenyl)ethan-1-amine hydrochloride (6b)	S 11
¹ H NMR spectrum	S11
¹³ C NMR spectrum	S12
Aniline hydrochloride (7b)	S 13
¹ H NMR spectrum	S13
¹³ C NMR spectrum	S14
<i>p</i> -Bromoaniline hydrochloride (8b)	S15
¹ H NMR spectrum	S15
¹³ C NMR spectrum	S16
Benzyl alcohol (9b)	S 17
¹ H NMR spectrum	S17
¹³ C NMR spectrum	S18
Optimization table	S 19
ESI/MS spectra of 4b	S 20-22
References	S 23

ميداديني. ا							U				 					A.,					
	 190	180	 170	 160	 150	140	130	 120	 110	 100	 80	 70	 60	 50	 40	 30	20	 10	_[0	ppm	
S2																					

¹³ C-NMR (15	1 MHz, CD₃OD)	11 13					55	42	⁹ ~ 0 ~ 2	[*] NH ₃ Cl ⁸ 2b
								CD ₃ OD		
			3, 5							
		2, 6								
							9	8 7		
	4	1								
	170 160 150	140 130 12	0 110	100 90	80	70 6	0 50	40) ppm

C 4	\sim
- 51	
~ .	0

190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	ppm	
				5	2		3	4	6					10, 11		8		13			
13(C-NMI	R (15′	1 MHz	:, CD ₃	OD)								С	D₃OD)		13			NH₃C ₃	; ;
13.				/ 153.22	152.65			114.96	- 114.24					$\bigwedge_{56.48}$							

155.24 153.15	$\overbrace{\begin{subarray}{c} 113.87\\ \hline \\ 113.87\\ 112.74\\ 112.74\\ \end{subarray}$	₹56.26 56.11			10 _	
¹³ C-NMR (151 MHz, CD ₃ OI	D) 14	CD ₃ OD		7 ₁₂ F ₃ C	3 4 4 4 5 6 6 6 6 6 6 6 6 6 6	
	3	10, 11	8		11 60)
	4, 6					
2						
	50 140 130 120 110 1	100 90 80 70 60 50	0 40	30 20		-

										2, 6													
								3	, 5														
									1														
end maintained	inni inni in ini ini ini ini ini ini in		na ilan da kana a dilan Kana ya kana a dilang	i é de la constanti de la cons La constanti de la constanti de La constanti de la constanti de		ele mán de de la se se la presente de la se se la s se la se	lon din din fam			n da an hai an hai an an hai an an hai an an hai an hai In hai an hai		a de la		uley in the second s	in the second	inal handan ana ang kana ang k			Million (1944) (19 44)		n politika in na poli		-
220	210 S14	200	190	180	170	160	150	' 140	' 130	1 20	110	100	90	80	70	60	, 50	40	' 30	20	10	ppm	

¹³C-NMR (151 MHz, D₂O)

S15

S	1	6
\sim		v

¹³ C-NMR	: (151 MHz	, D ₂ O)			3	3, 5 2 3, 5 2	9 124.77								3 Br	2 4 5	⁺ NH ₃ 6	CI	8b
						1	4												
220 210	200 190	180 1	70 160	150	140	130	120	110	100	90	80	70	60	50		30	20	10	ppm

Table S1: All the parameters tested during the optimization process are listed, with their corresponding isolated product yields. Methanol, 2-propanol, and water were independently evaluated as reaction solvents. In each case, the extraction process turned out to be troublesome and the product could not be isolated.

	Assessed parameters	Time (min.)	Temperature (°C)	Yield (%)
	CuCl ₂ 0,1 eq	10	80	82
	CuCl ₂ 0,1 eq	15	80	82
Time a ta at	CuCl ₂ 0,1 eq	30	80	65
Time test	CuCl ₂ 0,1 eq	60	80	60
	CuCl ₂ 0,1 eq	80	80	57
	CuCl ₂ 0,1 eq	90	80	48
	CuCl₂ 0,05 eq	10	80	73
	CuCl₂ 0,05 eq	30	80	56
	NaBH₄ 3 eq.	10	80	59
	CuCl ₂ 0,1 eq / 10 min. stirring prior to CuCl ₂ addition	10	80	82
D	$CuCl_2$ 0,05 eq / 15 min. stirring prior to $CuCl_2$ addition	10	80	71
Reagents	$CuCl_2$ 0,025 eq / 15 min. stirring prior to $CuCl_2$ addition	30	80	42
1631	$CuCl_2$ 0,05 eq / NaBH ₄ and nitrostyrene order switched	10	80	68
	CuCl ₂ 0,1 eq / CuCl ₂ addition between NaBH ₄ split in two portions	80	80	48
	CuCl ₂ 0,1 eq / DETA addition	10	80	80
	CuCl ₂ 0,05 eq / DETA addition in NaOH solution	10	80	70
	CuCl ₂ 0,05 eq / DETA addition in NaOH solution	90	80	41
	CuCl2 0,1 eq	15	60	64
Temp. test	CuCl ₂ 0,1 eq	10	110	82,6
	CuCl ₂ 0,1 eq	o.n.	rt	79
	MeOH	15	80	_
Solvents	2-PrOH	15	80	-
	H ₂ O	15	80	-
	L -			

Figure S1: ESI/MS spectrum of the crude mixture for the synthesis of **4b** after 15 minutes of stirring at 80 °C. The major peaks relate to the target product ([M+H] + m/z = 182,2) and the fragment with mass [M+H]⁺ m/z = 165,0 originated from α -cleavage of **4b** [1].

Figure S2: ESI/MS spectrum of the crude mixture for the synthesis of 4b after 30 minutes of stirring at 80 °C.

Figure S3: ESI/MS spectrum of the crude mixture for the synthesis of **4b** after 45 minutes of stirring at 80 °C. New structures with higher molecular masses emerge, while the concentration of **4b** decreases. The peaks with masses > 500 might indicate the formation of trimeric products.

Figure S4: ESI/MS spectrum of the crude mixture for the synthesis of **4b** after 60 minutes of stirring at 80 °C. The peak with $[M+H]^+ m/z = 151,0$ is associated to the fragment originated from β -cleavage of **4b** [1]. The peak with $[M+H]^+ m/z = 362,2$ might be resulting from the formation of *N*,*N*-bis(2,5-dimethoxyphenethyl)hydroxylamine as an intermediate species.

Figure S5: ESI/MS spectrum of the crude mixture for the synthesis of 4b after 75 minutes of stirring at 80 °C.

Figure S6: ESI/MS spectrum of the crude mixture for the synthesis of 4b after 90 minutes of stirring at 80 °C.

References

[1] Chen, B.H.; Liu, J.T.; Chen, H.M.; Chen, W.X.; Lin, C.H. *Applied Sciences* **2018**, *8*(7), p.1022.