

Supporting Information

for

Vinylogous functionalization of 4-alkylidene-5-aminopyrazoles with methyl trifluoropyruvates

Judit Hostalet-Romero, Laura Carceller-Ferrer, Gonzalo Blay, Amparo Sanz-Marco, José R. Pedro and Carlos Vila

Beilstein J. Org. Chem. 2025, 21, 533–540. doi:10.3762/bjoc.21.41

Detailed experimental procedures, characterization data, and copies of ¹H NMR and ¹³C NMR spectra

License and Terms: This is a supporting information file under the terms of the Creative Commons Attribution License (https://creativecommons.org/ licenses/by/4.0). Please note that the reuse, redistribution and reproduction in particular requires that the author(s) and source are credited and that individual graphics may be subject to special legal provisions.

Table of contents

1. General experimental methods	S1
2. Experimental procedures	S2
 i) Synthesis of 4-alkenyl-5-aminopyrazoles 3 ii) Procedure A for the vinylogous addition of 4-alkenyl-5-aminopyrazoles 3 to alkyl trifluoropyruvates 4. iii) Procedure B for the vinylogous addition of 4-alkenyl-5-aminopyrazoles 3 to alkyl trifluoropyruvates 4. iv) Reaction of acetone with 5-aminopyrazole 2a 	
3. Characterization of the 4-alkenyl-5-ainopyrazoles 3	S4
4. Characterization of products 5	
5. Characterization of products 7	S13
6. Asymmetric reactions	S13
7. NMR data (¹ H NMR and ¹³ C NMR experiments)	S14
8. HPLC data	
9. References	

<u>1. General experimental methods</u>

Unless otherwise noticed, commercial reagents were used without any extra purification. Reactions were followed by thin layer chromatography (TLC) using Merck Silica Gel 60 F-254 thin layer plates. For product purification, flash column chromatography using Merck silica gel 60, 0.040-0.063 mm was used. The diastereomeric ratio (dr) was determined via ¹H-NMR analysis. NMR spectra were carried out in a Bruker Avance III HD spectrometer at 300 MHz for ¹H and at 75 MHz for ¹³C, in a Bruker AV400 spectrometer at 400 MHz for ¹H and at 100 MHz for ¹³C or in a Bruker Neo500 spectrometer at 500 MHz for ¹H and at 126 MHz for ¹³C using residual non-deuterated solvent as internal standard (CHCl₃: δ 7.26 for ¹H and 77.0 ppm for ¹³C). Chemical shifts are given in ppm. The carbon type was determined by Distortionless Enhancement by Polarization Transfer (DEPT) experiments. High resolution mass spectra (ESI) were recorded on a TRIPLETOFT5600 spectrometer equipped with an electrospray source with a capillary voltage of 4.5 kV. Cyclic ketones 1, 5-aminopyrazoles 2 and alkyl trifluoropyruvates 4 are commercial reactants and were used without subsequent purification. These reactions have been acquired from the following commercial cases: Aldrich, TCI, BLD and Fluorochem.

2. Experimental procedures

i. Synthesis of 4-alkenyl-5-aminopyrazoles 3

In a 25 mL round-bottomed flask, the 5-aminopyrazole (1 equiv) was dissolved in the cyclic ketone (1.5 equiv) and 0.5 mL glacial acetic acid (if the cyclic ketone was solid 2 mL of CH₂Cl₂ were used as solvent). Next, the reaction mixture was left, with stirring, at room temperature for a period of 3–5 days following the reaction using thin layer chromatography (TLC). The reaction mixture was evaporated under reduced pressure and the crude was purified via column chromatography with hexane:EtOAc mixtures as eluent to afford the corresponding products **3**.

ii. Procedure A for the vinylogous addition of 4-alkenyl-5-aminopyrazoles 3 to alkyl trifluoropyruvates 4.

In a 10 mL round-bottomed flask, the corresponding 4-alkenyl-5-aminopyrazole (**3**, 0.2 mmol, 1 equiv) and the alkyl trifluoropyruvate (**4**, 0.6 mmol, 3 equiv) were dissolved in 2 mL toluene. The reaction mixture was heated at 70 °C with a condenser for 1 day. After this time, the solvent was evaporated under reduced pressure and the diastereoisomeric ratio was evaluated using ¹H NMR of the crude reaction mixture. Subsequently, the crude was purified via column chromatography with hexane:EtOAc mixtures or hexane:DCM mixtures as eluent to afford the corresponding alcohols **5**.

iii. Procedure B for the vinylogous addition of 4-alkenyl-5-aminopyrazoles 3 to alkyl trifluoropyruvates 4.

In a 10 mL round-bottomed flask, the corresponding 4-alkenyl-5-aminopyrazole (**3**, 0.2 mmol, 1 equiv), **SQ-1** (0.02 mmol, 10 mol %) and the alkyl trifluoropyruvate (**4**,

0.6 mmol, 3 equiv) were dissolved in 2 mL toluene. The reaction mixture was heated at 50 °C with a condenser for 1 day. After this time, the solvent was evaporated under reduced pressure and the diastereoisomeric ratio was evaluated using ¹H NMR of the crude reaction mixture. Subsequently, the crude was purified via column chromatography with hexane:EtOAc mixtures or hexane:DCM mixtures as eluent to afford the corresponding alcohols **5**.

iv. Reaction of acetone with 5-aminopyrazole 2a.

In a 25 mL round-bottomed flask, the 5-aminopyrazole **2a** (0.87 g, 5 mmol) was dissolved in acetone (0.73 mL, 10 mmol) and 0.5 mL glacial acetic acid. Next, the reaction mixture is left, with stirring, at room temperature for a period of 3–5 days following the reaction using thin layer chromatography (TLC). The reaction mixture was evaporated under reduced pressure and the crude was purified via column chromatography with hexane:EtOAc mixtures as eluent to afford the corresponding products **7**.

3. Chacterization of 4-alkenyl-5-aminopyrazoles 3 Compound 3aa¹:

Following general procedure i), product **3aa** was synthetized using 1.2 mL (12 mmol) of cyclohexanone (**1a**) with 1.39 g (8 mmol) 5-aminopyrazole (**2a**) obtaining 0.98 g (63% yield) of the product **3aa** as a yellow solid (m.p. = 86-90 °C).

¹H RMN (300 MHz, CDCl₃) δ 7.57 (dd, J = 8.6, 1.2 Hz, 2H), 7.49-7.41 (m, 2H), 7.34-7.27 (m, 1H), 5.67 (tt, J = 3.6, 1.7 Hz, 1H), 3.77 (s, 2H), 2.30-2.13 (m, 7H), 1.82-1.60 (m, 4H). ¹³C RMN (75 MHz, CDCl₃) δ 147.2 (C), 141.6 (C), 138.9 (C), 130.5 (C), 129.4 (CH), 126.8 (CH), 126.2 (CH), 123.5 (CH), 107.1 (C), 29.2 (CH₂), 25.6 (CH₂), 23.1 (CH₂), 22.2 (CH₂), 13.6 (CH₃).

· Compound 3ba:

Following general procedure i), product **3ba** was synthetized using 1.51 g (12 mmol) of 4,4-dimethylcyclohexan-1-one (**1b**) with 1.39 g (8 mmol) 5-aminopyrazole (**2a**) obtaining 1.06 g (47% yield) of the product **3ba** as a yellow solid (m.p. = 123-126 °C).

¹H NMR (300 MHz, CDCl₃) δ 7.57 (dd, J = 8.6, 1.2 Hz, 2H), 7.53-7.40 (m, 2H), 7.35-7.27 (m, 1H), 5.59 (tt, J = 3.8, 1.8 Hz, 1H), 3.75 (s, 2H), 2.27 (ddt, J = 6.5, 4.3, 2.1 Hz, 2H), 2.23 (s, 3H), 1.98 (dd, J = 4.1, 2.3 Hz, 2H), 1.50 (t, J = 6.4 Hz, 2H), 0.99 (s, 6H). ¹³C NMR (75 MHz, CDCl₃) δ 147.2 (C), 141.6 (C), 138.9 (C), 129.4 (CH), 129.2 (C), 126.8 (CH), 125.2 (CH), 123.5 (CH), 106.8 (C), 39.6 (CH₂), 35.8 (CH₂), 28.3 (CH₃), 28.2 (C), 27.0 (CH₂), 13.6 (CH₃)

<u>Compound</u>
 <u>3ca:</u>

Following general procedure i), product **3ca** was synthetized using 0.94 g (6 mmol) of 1,4-dioxaspiro[4.5]decan-8-one (**1c**) with 0.69 g (4 mmol) 5-aminopyrazole (**2a**) obtaining 0.86 g (69% yield) of the product **3ca** as a yellow solid (m.p. = 102-105 °C). **¹H NMR (300 MHz, CDCl₃)** δ 7.56 (dd, *J* = 8.6, 1.2 Hz, 1H), 7.51-7.39 (m, 1H), 7.34-7.27 (m, 1H), 5.56 (tt, *J* = 3.6, 1.5 Hz, 1H), 4.02 (s, 3H), 3.80 (s, 1H), 2.50 (tt, *J* = 6.0, 1.7 Hz, 1H), 2.47-2.43 (m, 1H), 2.24 (s, 2H), 1.89 (t, *J* = 6.4 Hz, 1H). **¹³C NMR (100 MHz, CDCl₃)** δ 147.1 (C), 141.7 (C), 138.8 (C), 130.2 (C), 129.4 (CH), 126.9 (CH), 123.6 (CH), 122.8 (CH), 107.6 (C), 105.9 (C), 64.4 (CH₂), 36.1 (CH₂), 31.4 (CH₂), 28.4 (CH₂), 13.7 (CH₃). · Compound 3da:

Following general procedure i), product **3da** was synthetized using 0.56 mL (6 mmol) of tetrahydro-4*H*-pyran-4-one (**1d**) with 0.69 g (4 mmol) 5-aminopyrazole (**2a**) obtaining 0.12 g (11% yield) of the product **3da** as a yellow solid (m.p. = 98-102 °C).

¹H NMR (300 MHz, CDCl₃) δ 7.57-7.48 (m, 2H), 7.42 (t, *J* = 7.8 Hz, 2H), 7.33-7.25 (m, 1H), 5.65 (tt, *J* = 2.9, 1.6 Hz, 1H), 4.27 (q, *J* = 2.7 Hz, 2H), 3.88 (t, *J* = 5.4 Hz, 2H), 3.84 (s, 2H), 2.38 (ttd, *J* = 5.4, 2.6, 1.7 Hz, 2H), 2.22 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 146.8 (C),141.8(C), 138.5 (C), 129.3 (CH), 128.4 (C), 126.9 (CH), 123.5 (CH), 123.5 (CH), 104.8(C), 65.5 (CH₂), 64.3 (CH₂), 29.0 (CH₂), 13.6 (CH₃).

Compound 3ec:

Following general procedure i), product **3da** was synthetized using 0.79 g (6 mmol) of 1,3-dihydro-2*H*-inden-2-one (**1e**) with 0.69 g (4 mmol) 5-aminopyrazole (**2a**) obtaining 0.54 g (47% yield) of the product **3da** as a brown oil.

¹H NMR (300 MHz, CDCl₃) δ 7.58 (dd, J = 8.7, 1.2 Hz, 2H), 7.54-7.46 (m, 2H), 7.47 (dd, J = 7.3, 0.9 Hz, 1H), 7.41-7.34 (m, 2H), 7.28 (dd, J = 7.5, 1.2 Hz, 1H), 7.15 (td, J = 7.3, 1.1 Hz, 1H), 6.79-6.77 (m, 1H), 4.12 (s, 2H), 3.79 (s, 2H), 2.45 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 147.5 (C), 145.5 (C), 142.8 (C), 141.9 (C), 139.9 (C), 138.2 (C), 129.6 (CH), 127.5 (CH), 126.6 (CH), 124.0 (CH), 123.8 (CH), 123.7 (CH), 123.3 (CH), 120.0 (CH), 101.2 (C), 41.1 (CH₂), 14.9 (CH₃)

<u>Compound 3fa:</u>

Following general procedure i), product **3da** was synthetized using 1.1 mL (12 mmol) of cyclopentanone (**1f**) with 1.39 g (8 mmol) 5-aminopyrazole (**2a**) obtaining 0.10 g (5% yield) of the product **3fa** as a yellow oil.

¹H NMR (300 MHz, CDCl₃) δ 7.35 (dd, *J* = 7.4, 1.2 Hz, 2H), 7.32 – 7.20 (m, 2H), 7.18 – 7.06 (m, 1H), 5.45 (p, *J* = 2.3 Hz, 1H), 3.75 (s, 2H), 2.58 – 2.45 (m, 2H), 2.38 – 2.24 (m, 2H), 2.11 (s, 3H), 1.86 – 1.70 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 147.4 (C), 142.3(C), 138.5 (C), 135.6 (C), 129.4 (CH), 127.0 (CH), 123.7(CH), 123.7(CH), 101.4(C), 35.3(CH₂), 32.6(CH₂), 23.4(CH₂), 14.4 (CH₃).

· Compound 3ga:

Following general procedure i), product **3ga** was synthetized using 1.4 mL (12 mmol) of cycloheptanone (**1g**) with 1.39 g (8 mmol) 5-aminopyrazole (**2a**) obtaining 0.12 g (6% yield) of the product **3ga** as a yellow oil.

¹H NMR (400 MHz, CDCl₃) δ 7.56 (d, J = 7.5 Hz, 2H), 7.44 (t, J = 7.8 Hz, 2H), 7.31 (dd, J = 7.4, 1.1 Hz, 1H), 5.84 (t, J = 6.6 Hz, 1H), 3.79 (s, 2H), 2.61 – 2.37 (m, 2H), 2.32 – 2.25 (m, 2H), 2.23 (d, J = 1.0 Hz, 3H), 1.84 (dtd, J = 11.8, 5.6, 3.2 Hz, 2H), 1.73 – 1.50 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 146.9 (C), 141.3 (C), 138.7 (C), 137.2 (C), 131.5 (CH), 129.4 (CH), 126.9 (CH), 123.5 (CH), 108.9 (C), 33.9 (CH₂), 32.8 (CH₂), 28.8 (CH₂), 27.3 (CH₂), 27.2 (CH₂), 13.3 (CH₃).

Compound 3ab²:

Following general procedure i), product **3aa** was synthetized using 0.6 mL (6 mmol) of cyclohexanone (**1a**) with 0.44 g (8 mmol) 5-aminopyrazole (**2b**) obtaining 0.41 g (54% yield) of the product **3ab** as a white solid (m.p. = 178-180 °C).

¹H NMR (400 MHz, CDCl₃) 5.54 (tt, J = 3.5, 1.6 Hz, 1H), 3.60 (s, 3H), 3.45 (s, 1H), 2.22 – 2.15 (m, 4H), 2.14 (s, 3H), 1.75-1.61 (m, 4H). ¹³C NMR (75 MHz, CDCl₃) δ 144.7 (C), 141.5 (C), 130.9 (C), 125.5 (CH), 107.4 (C), 34.1 (CH₃), 29.3 (CH₂), 25.5 (CH₂), 23.1 (CH₂), 22.2 (CH₂), 13.5 (CH₃).

<u>Compound 3ac²:</u>

Following general procedure i), product **3ac** was synthetized using 0.3 mL (3 mmol) of cyclohexanone (**1a**) with 0.47 g (2 mmol) 5-aminopyrazole (**2c**) obtaining 0.10 g (16% yield) of the product **3ac** as an orange solid (m.p. = 96-106 °C).

¹H NMR (400 MHz, CDCl₃) δ 7.81 – 7.74 (m, 2H), 7.69 (dd, J = 8.6, 1.2 Hz, 2H), 7.53 – 7.44 (m, 2H), 7.41 – 7.34 (m, 2H), 7.34 – 7.27 (m, 2H), 5.84 (tt, J = 3.7, 1.7 Hz, 1H), 3.84 (s, 2H), 2.25 (d, J = 2.3 Hz, 2H), 2.03 (d, J = 1.9 Hz, 2H), 1.68 (t, J = 3.2 Hz, 4H). ¹³C NMR (75 MHz, CDCl₃) δ 149.0 (C), 142.3 (C), 134.0 (C), 134.3 (C), 131.4 (C), 129.4 (CH), 128.1 (CH), 127.49 (CH), 127.46 (CH), 127.2 (CH), 127.0 (CH), 123.6 (CH), 106.4 (C), 29.4 (CH₂), 25.8 (CH₂), 23.1 (CH₂), 22.2 (CH₂).

Compound 3ad:

Following general procedure i), product **3ac** was synthetized using 0.3 mL (3 mmol) of cyclohexanone (**1a**) with 0.37 g (2 mmol) 5-aminopyrazole (**2d**) obtaining 0.25 g (46% yield) of the product **3ac** as a yellow solid (m.p. = 91-92 °C).

¹H NMR (300 MHz, CDCl₃) δ 7.43 (d, J = 8.4 Hz, 2H), 7.31 – 7.11 (m, 2H), 5.66 (tt, J = 3.6, 1.7 Hz, 1H), 3.73 (s, 2H), 2.38 (s, 3H), 2.29 – 2.11 (m, 7H), 1.88 – 1.59 (m, 4H). ¹³C NMR (126 MHz, CDCl₃) δ 146.8 (C), 141.6 (C), 136.7 (C), 136.4 (C), 130.6 (C), 129.9 (CH), 126.0 (CH), 123.6 (CH), 106.9 (C), 29.3 (CH₂), 25.6 (CH₂), 23.1 (CH₂), 22.3 (CH₂), 21.1 (CH₃), 13.6 (CH₃).

4. Characterization of products 5

· Compound 5aaa:

Following general procedure A, product **5aaa** was synthetized as colorless oil in 64% yield (0.128 mmol, 52.4 mg). Diastereoisomeric ratio (7:1) was determined via ¹H NMR analysis. The enantiomeric excess was determined by HPLC using a chiral stationary phase (Chiralpak[®] AYH), using hexane:iPrOH 80:20, 1.0mL/min, first enantiomer t_R = 4.77 min, second enantiomer t_R = 6.17 min.

¹H NMR (300 MHz, CDCl₃) δ 7.58-7.51 (m, 2H), 7.46 (t, *J*= 7.7 Hz, 2H), 7.37-7.29 (m, 1H), 5.89 (td, *J* = 3.9, 1.4 Hz, H), 4.06 (s, 1H), 3.74 (s, 2H), 3.54 (s, 3H), 3.38-3.30 (m, 1H), 2.19 (ddd, *J* = 7.7, 3.7, 1.9 Hz, 2H), 2.13 (s, 3H), 2.10-1.88 (m, 3H), 1.74-1.52 (m, 1H). ¹³C NMR (75 MHz, CDCl₃) δ 170.6 (C), 147.5 (C), 143.1 (C), 138.7 (C), 135.5 (CH), 129.5 (CH), 127.2 (CH), 126.4 (C), 123.8 (CH), 123.72 (q, *J* = 288.8 Hz, CF₃), 104.5 (C), 79.5 (q, *J* = 27.4 Hz, C), 53.8 (CH₃), 40.7 (CH), 25.5 (CH₂), 24.7 (q, *J* = 2.5 Hz, CH₂), 19.31 (CH₂), 12.64 (CH₃). ¹⁹F NMR (282 MHz, CDCl₃) δ -73.51. HRMS (ESI) m/z 410.1689 [M+H]⁺ C₂₀H₂₃F₃N₃O₃⁺ requires 410.1686.

· Compound 5aab:

Following general procedure A, product **5aab** was synthetized as colorless oil in 56% yield (0.112 mmol, 50.9 mg). Diastereoisomeric ratio (6:1) was determined via ¹H NMR analysis.

¹H NMR (500 MHz, CDCl₃) δ 7.52 (dd, J = 8.6, 1.2 Hz, 2H), 7.49-7.41 (m, 2H), 7.32 (tt, J = 7.0, 1.3 Hz, 1H), 5.88 (td, J = 3.9, 1.3 Hz, 1H), 4.10-4.01 (m, 2H), 3.76-3.63 (m, 3H), 3.33 (s, 1H), 2.27-2.16 (m, 2H), 2.13 (s, 3H), 2.12-2.06 (m, 1H), 2.03-1.96 (m, 1H), 1.95-1.82 (m, 1H), 1.63 (dtd, J = 13.0, 6.8, 2.8 Hz, 1H), 1.21 (t, J = 7.2 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 170.1 (C), 147.5 (C), 143.2 (C), 138.6 (C), 135.4 (CH), 129.5 (CH), 127.2 (CH), 126.4 (C), 123.77 (CH), 123.77 (q, J = 288.9 Hz, CF₃), 104.6 (C), 79.6 (q, J = 27.4 Hz), 63.6 (CH2), 40.5 (CH), 25.5 (CH₂), 24.7 (q, J = 2.4 Hz, CH₂), 19.1 (CH₂), 13.5 (CH₃), 12.7 (CH₃). ¹⁹F NMR (282 MHz, CDCl₃) δ -73.04. HRMS (ESI) m/z 424.1847 [M+H]⁺ C₂₁H₂₅F₃N₃O₃⁺ requires 424,1843.

Compound 5baa:

Following general procedure A, product **5baa** was synthetized as colorless oil in 54% yield (0.108 mmol, 47.5 mg). Diastereoisomeric ratio (6:1) was determined via ¹H NMR analysis.

¹H NMR (300 MHz, CDCl₃) δ 7.54 (dd, J = 8.4, 1.3 Hz, 2H), 7.49-7.42 (m, 2H), 7.38-7.29 (m, 1H), 5.78 (dt, J = 6.1, 2.1 Hz, 1H), 4.31 (s, 1H), 3.75 (s, 2H), 3.60 (s, 3H), 3.34 (dtt, J = 9.7, 3.8, 2.0 Hz, 1H), 2.08 (s, 3H), 2.03 (dd, J = 4.1, 2.1 Hz, 1H), 1.91-1.58 (m, 3H), 1.06 (s, 3H), 1.05 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 170.1 (C), 147.9 (C), 143.1 (C), 138.5 (C), 135.2 (CH), 129.5 (CH), 127.6 (q, J = 273.5 Hz, CF₃), 127.4 (CH), 124.1 (CH), 104.0 (C), 79.8 (q, J = 26.9 Hz, C), 53.8 (CH₃), 40.8 (CH), 39.0 (CH₂), 36.7 (CH₂), 31.8 (CH₃), 29.2 (C), 24.3 (CH₃), 12.3 (CH₃). ¹⁹F NMR (282 MHz, CDCl₃) δ -72.76. HRMS (ESI) m/z 438.2005 [M+H]⁺ C₂₂H₂₇F₃N₃O₃⁺ requires 438.1999.

· Compound 5caa:

Following general procedure A, product **5caa** was synthetized as colorless oil in 29% yield (0.058 mmol, 27.2 mg). Diastereoisomeric ratio (7:1) was determined via ¹H NMR analysis.

¹H NMR (500 MHz, CDCl₃) δ 7.54 (dd, J = 8.6, 1.2 Hz, 1H), 7.48-7.42 (m, 1H), 7.35-7.29 (m, 1H), 5.81 (td, J = 3.9, 1.6 Hz, 1H), 5.77 (s, 1H), 4.1-3.96 (m, 4H), 3.83 (s, 2H), 3.77-3.70 (m, 1H), 3.48 (s, 3H), 2.52-2.48 (m, 1H), 2.31-2.25 (m, 1H), 2.19-2.14 (m, 1H), 2.13 (s, 2H) . ¹³C NMR (126 MHz, CDCl₃) δ 168.1 (C), 147.8 (C), 144.0 (C), 138.6 (C), 135.8 (C), 131.8 (CH), 129.5 (CH), 127.2 (CH), 126.6 (C), 123.8 (CH), 106.7 (C), 79.8 (q, J = 27.0 Hz, C), 64.9 (CH₂), 64.7 (CH₂), 53.1 (CH₃), 36.5 (CH₂), 32.7 (CH₂), 30.3 (CH), 12.5 (CH₃). ¹⁹F NMR (282 MHz, CDCl₃) δ -72.77. HRMS (ESI) m/z 468.1738 [M+H]⁺ C₂₂H₂₅F₃N₃O₅⁺ requires 468.1741.

Compound 5daa:

Following general procedure A, product **5daa** was synthetized as yellow oil in 66% yield (0.132 mmol, 54.2 mg). Diastereoisomeric ratio (1.13:1) was determined via ¹H NMR analysis.

Diastereoisomer 1: ¹H NMR (400 MHz, CDCl₃) δ 7.52 (dd, *J* = 8.6, 1.3 Hz, 2H), 7.50-7.43 (m, 2H), 7.37-7.30 (m, 1H), 5.96 (dt, *J* = 2.9, 1.5 Hz, 1H), 4.70 (s, 1H), 4.45 (d, *J* = 12.5 Hz, 1H), 4.42-4.30 (m, 2H), 3.94-3.88 (m, 1H), 3.83 (d, *J* = 2.5 Hz, 2H), 3.43 (s, 3H), 3.28 (s, 1H), 2.18 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 167.8 (C), 147.2 (C), 143.7 (C), 138.4 (C), 130.9 (CH), 129.60 (CH), 127.3 (CH), 125.7 (C), 123.8 (q, *J* = 284.8 Hz, CF₃), 123.6 (CH), 102.4 (C), 79.80 (q, *J* = 28.0 Hz, C), 66.6 (CH₂), 66.0 (CH₂), 53.0 (CH₃), 39.5 (CH), 13.0 (CH₃). ¹⁹F NMR (282 MHz, CDCl₃) δ -73.62. HRMS (ESI) m/z 412.1482 [M+H]⁺ C₁₉H₂₁F₃N₃O₄⁺ requires 412.1479.

Diastereoisomer 2: ¹H NMR (400 MHz, CDCl₃) δ 7.54 (d, *J* = 7.5 Hz, 2H), 7.46 (t, *J* = 7.6 Hz, 2H), 7.32 (t, *J* = 7.4 Hz, 1H), 5.92 (t, *J* = 2.3 Hz, 1H), 4.34 (d, *J* = 2.9 Hz, 1H), 4.32 (t, *J* = 2.3 Hz, 1H), 4.29-4.24 (m, 1H), 4.17 (d, *J* = 12.2 Hz, 1H), 3.92 (s, 2H), 3.85 (d, *J* = 1.1 Hz, 3H), 3.79 (dd, *J* = 12.2, 2.7 Hz, 1H), 3.16 (s, 1H), 2.21 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 169.8 (C), 146.6 (C), 142.6 (C), 138.5 (C), 129.9 (CH), 129.5 (CH), 127.2 (CH), 125.8 (C), 123.7 (CH), 104.4 (C), 80.2 (q, *J* = 28.8 Hz, C), 66.3 (CH₂), 65.8 (CH₂), 53.8 (CH₃), 40.2 (CH), 13.3 (CH₃). ¹⁹F NMR (282 MHz, CDCl₃) δ -74.68. HRMS (ESI) m/z 412.1485 [M+H]⁺ C₁₉H₂₁F₃N₃O₄⁺ requires 412.1479.

<u>Compound 5faa:</u>

Following general procedure A, product **5faa** was synthetized as orange oil in 27% yield (0.054 mmol, 21.3 mg). Diastereoisomeric ratio (6:1) was determined via ¹H NMR analysis.

¹H NMR (300 MHz, CDCl₃) δ 7.53 (dd, J = 8.6, 1.4 Hz, 2H),7.47 (t, J = 7.6 Hz, 2H), 7.37-7.29 (m, 1H), 5.91 (q, J = 2.2 Hz, 1H), 3.93 (s, 1H), 3.78-3.69 (m, 2H), 3.50 (s, 3H), 2.57 (dddd, J = 17.5, 6.4, 5.1, 2.5Hz, 1H), 2.49-2.35 (m, 2H), 2.23-2.15 (m, 1H), 2.13 (s, 3H), 2.04-1.87 (m, 1H). ¹³C NMR (75 MHz, CDCl₃) δ 170.2 (C), 147.8 (C), 143.4 (C), 138.5 (C), 136.7 (CH), 131.5 (C), 129.5 (CH), 127.3 (CH), 123.8 (CH), 99.5 (C), 78.8 (q, J = 27.6 Hz, C), 53.7 (CH₃), 49.5 (CH), 31.9 (CH₂), 25.0 (q, J = 2.5 Hz, CH₂), 12.7 (CH₃). ¹⁹F NMR (282 MHz, CDCl₃) δ -74.65. HRMS (ESI) m/z 447,1526 [M+H]⁺ C₁₉H₂₁F₃N₃O₃⁺ requires 396.1530. Compound 5gaa:

Following general procedure A, product **5gaa** was synthetized as orange oil in 80% yield (0.160 mmol, 68.0 mg). Diastereoisomeric ratio (6:1) was determined via ¹H NMR analysis.

¹H NMR (300 MHz, CDCl₃) δ 7.51 (dd, J = 8.6, 1.4 Hz, 2H), 7.48- 7.40 (m, 2H), 7.34-7.28 (m, 1H), 5.94 (dd, J = 8.9, 5.2 Hz, 1H), 4.02 (s, 1H), 3.71 (s, 2H), 3.46 (t, J = 6.3 Hz, 1H), 3.34 (s, 3H), 2.85- 2.66 (m, 1H), 2.21 (s, 3H), 2.18-1.96 (m, 3H), 1.92-1.69 (m, 3H), 1.51-1.36 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 171.1 (C), 147.2 (C), 142.4 (C), 138.6 (C), 136.5 (CH), 130.0 (C), 129.5 (CH), 127.0 (CH), 123.6 (q, J = 288.0 Hz, CF₃), 123.3 (CH), 107.3 (C), 80.7 (q, J = 28.2 Hz, C), 53.5 (CH₃), 47.0 (CH), 26.7 (CH₂), 26.4 (CH₂), 26.1 (CH₂), 24.6 (CH₂), 13.4 (CH₃). ¹⁹F NMR (282 MHz, CDCl₃) δ -73.52. HRMS (ESI) m/z 424.1849 [M+H]⁺ C₂₁H₂₅F₃N₃O₃⁺ requires 424.1843.

· Compound 5aba:

Following general procedure A, product **5aba** was synthetized as yellow solid in 46% yield (0.092 mmol, 32.2 mg) (m. p.= 99-107 °C). Diastereoisomeric ratio (4:1) was determined via ¹H NMR analysis.

¹H NMR (400 MHz, CDCl₃) δ 5.75 (td, J = 3.9, 1.3 Hz, 1H), 3.98 (s, 1H), 3.56 (s, 3H), 3.48-3.36 (m, 5H), 3.27 (tq, J = 5.3, 1.8 Hz, 1H), 2.21-2.12(m, 2H), 2.04 (s, 3H), 2.02-1.93 (m, 2H), 1.91-1.80 (m, 1H), 1.59 (tdq, J = 9.0, 5.9, 2.8 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃) δ 170.7 (C), 145.3 (C), 143.1 (C), 134.9(CH),126.7 (C), 123.75 (q, J = 289.1 Hz, CF₃), 105.1 (C), 79.6 (q, J = 27.4 Hz, C), 53.7 (CH₃), 40.6 (CH), 34.1 (CH₃), 25.5 (CH₂), 24.7 (q, J = 2.3Hz, CH₂), 19.1 (CH₂), 12.6 (CH₃). ¹⁹F NMR (282 MHz, CDCl₃) δ -73.55. HRMS (ESI) m/z 348.1531 [M+H]⁺ C₁₅H₂₀F₃N₃O₃⁺ requires 348.1530.

· Compound 5aca:

Following general procedure A, product **5aca** was synthetized as yellow solid in 41% yield (0.082 mmol, 39.3 mg) (mp 186–200 °C). Diastereoisomeric ratio (6:1) was determined via ¹H NMR analysis.

¹H NMR (300 MHz, CDCl₃) δ 7.84-7.77 (m, 2H), 7.64 (dd, J = 8.5, 1.2 Hz, 2H), 7.50 (t, J = 7.7 Hz, 2H), 7.43-7.28 (m, 4H), 6.13 (td, J = 3.8, 1.1 Hz, 1H), 4.05 (s, 1H), 3.83 (s, 2H), 3.48 (s, 3H), 3.11 (s, 1H), 2.36-2.28 (m, 2H), 2.17-1.94 (m, 2H), 1.88-1.60 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 170.9 (C), 148.5 (C), 144.1 (C), 138.7 (C), 135.5 (CH), 133.8 (C), 129.6 (CH), 128.4 (CH), 127.8 (CH), 127.6 (CH), 127.4 (C), 126.3 (CH), 124.1 (CH), 123.6 (q, J = 288.9 Hz, CF₃), 103.3 (C), 79.6 (q, J = 27.7 Hz, C), 53.9 (CH₃), 40.2 (CH), 25.8 (CH₂), 24.9 (q, J = 1.8 Hz, CH₂), 18.4 (CH₂). ¹⁹F NMR (282 MHz, CDCl₃) δ -73.71. HRMS (ESI) m/z 348.1531 [M+H]⁺ C₁₅H₂₀F₃N₃O₃⁺ requires 348.1530.

• Compound **5ada**:

Following general procedure A, product **5ada** was synthetized as yellow solid in 45% yield (0.09 mmol, 38.2 mg) (mp 163–167 °C). Diastereoisomeric ratio (7:1) was determined via ¹H NMR analysis.

¹H NMR (300 MHz, CDCl₃) δ 7.39 (d, J = 8.3 Hz, 2H), 7.25 (d, J = 8.0 Hz, 2H), 5.88 (td, J = 3.9, 1.4 Hz, 1H), 4.07 (s, 1H), 3.70 (s, 2H), 3.53 (s, 3H), 3.37-3.30 (m, 1H), 2.39 (s, 3H), 2.19 (dd, J = 6.2, 3.6 Hz, 2H), 2.12 (s, 3H), 2.07-1.84 (m, 3H), 1.73-1.55 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 170.6 (C), 147.3 (C), 143.1 (C), 137.3 (C), 136.0 (C), 135.5 (CH), 130.1 (CH), 126.4 (C), 123.9 (CH), 123.8 (q, J = 288.8 Hz, CF₃), 104.3 (C), 79.7 (q, J = 27.3 Hz, C), 53.8 (CH₃), 40.8 (CH), 25.6 (CH₂), 24.7 (q, J = 2.4 Hz, CH₂), 21.1 (CH₃), 19.4 (CH₂), 12.6 (CH₃). ¹⁹F NMR (282 MHz, CDCl₃) δ -73.51. HRMS (ESI) m/z 424.1839 [M+H]⁺ C₂₁H₂₅F₃N₃O₃⁺ requires 424.1843.

5. Characterization of product 7

<u>Compound 7:</u>

Following procedure iv, product **7** was synthetized as a colorless oil in 37% yield (0.93 mmol, 360 mg).

¹H NMR (300 MHz, CDCl₃) δ 7.50-7.38 (m, 8H), 7.35-7.25 (m, 2H), 3.61 (s, 4H), 2.34 (s, 6H), 1.72 (s, 6H). ¹³C NMR (75 MHz, CDCl₃) δ 146.4 (C), 142.4 (C), 138.4 (C), 129.4 (CH), 127.2 (CH), 124.0 (CH), 106.9 (C), 33.7 (C), 29.4 (CH₃), 16.1 (CH₃). HRMS (ESI) m/z 387.2300 [M+H]⁺ $C_{23}H_{27}N_6^+$ requires 387.2292.

6. Asymmetric reactions

Scheme S.1 - Optimization of the organocatalyst.

rt, 5 dies, 30% yield, 6:1 dr, 0% ee 50°C, 1 day, 52% yield, 7:1 dr, 0% ee

50°C, 3 days, 58% yield, 7:1 dr, 0% ee

50°C, 3 days, 51% yield,6:1 dr, 0% ee

50°C, 3 days, 55%, 7:1 dr, 0% ee

7. NMR data

• Compound 3aa:

Compound 3ea:

.

.

Compound 3ad:

•

.

•

Compound 5baa:

.

Compound 5daa-diastereoisomer 2:

.

Compound 5gaa:

•

Compound 5aba:

•

Compound 5ada:

•

7. HPLC DATA

Compound 5aaa:

8. References

- 1. Li, C.; Zhang, F.; Shen, Z. Tetrahedron, 2020, 76, 131727.
- 2. Winters, G.; Sala, A.; De Paoli, A.; Conti, M. *Synthesis* **1984**, 1050-1052.