

Supporting Information

for

Sequential two-step, one-pot microwave-assisted Urech synthesis of 5-monosubstituted hydantoins from L-amino acids in water

Wei-Jin Chang, Sook Yee Liew, Thomas Kurz and Siow-Ping Tan

Beilstein J. Org. Chem. 2025, 21, 596-600. doi:10.3762/bjoc.21.46

NMR and MS spectra of synthesized compounds

License and Terms: This is a supporting information file under the terms of the Creative Commons Attribution License (https://creativecommons.org/ licenses/by/4.0). Please note that the reuse, redistribution and reproduction in particular requires that the author(s) and source are credited and that individual graphics may be subject to special legal provisions.

Supporting Information

Table of contents

1. General information	S1
2. Synthesis and characterization of products	S1
2.1 Characterization data	S2
3. NMR and HRMS spectra	S3
4. Chromatograms of compounds	S22
5. References	S27

1. General information

All chemicals were acquired from commercial sources (Merck or Thermo Fischer) at reagent grade and were used without further purification. The syntheses were carried out in an Anton-Parr Monowave 400 microwave reactor with the reaction temperature controlled using the on-broad infra-red sensor. The NMR spectra were acquired in a Bruker DMX 400 NMR instrument at a resolution of 400 MHz and 100 MHz, for ¹H and ¹³C NMR respectively, using the residual solvent peak of DMSO-*d*₆ at 2.50 ppm (¹H NMR) and 39.5 ppm (¹³C NMR) as reference. All chemical shifts (δ) were recorded in ppm unit and coupling frequency (*J*) in Hertz (Hz). Shorthand notations were used for the NMR characterization: s (singlet); d (doublet); q (quartet); dd (doublet of doublets); td (triplet of doublets); m (multiplet). The high resolution *m/z* values were measured in Dalton units (Da) using an Agilent 1290 Infinity LC system coupled to an Agilent 6520 Accurate-Mass Q-TOF mass spectrometer with the ESI source in positive mode. Shorthand notation: calcd (calculated). HPLC analyses were performed using a mobile phase of acetonitrile/ultrapure water (9:1) in an Agilent 1260 with a Zorbax C₁₈ column (5 µm) and detected by diode array at 210 nm and 254 nm. All hydantoin compounds were reported to be >95% pure.

2. Synthesis and characterization of products

General procedure for the synthesis of (*S*)-5-benzylimidazolidine-2,4-dione (**H2a**):

A 30 mL microwave reactor vial was charged with L-phenylalanine (5 mmol), distilled water (7 mL), and potassium cyanate (25 mmol) and irradiated in an Anton–Paar Monowave 400 microwave reactor at 80 °C for 1 hour. Upon completion of the *N*-carbamylation reaction, as confirmed by TLC analysis, the reaction mixture was treated with concentrated hydrochloric acid (7 mL) and microwave irradiated at 80 °C for 15 min. The precipitates in the reaction mixture were filtered, washed with 1 M HCl solution (2 × 7 mL), distilled water (2 × 10 mL), and dried to afford **H2a** as a white solid. Yield 89%. $[\alpha]_D^{20}$ -100.9 (*c* 11, CH₃CN). ¹H NMR (400 MHz, DMSO-d₆) δ 10.44 (s, 1H), 7.93 (s, 1H), 7.17 – 7.30 (m, 5H), 4.33 (td, *J* = 5, 1 Hz, 1H), 2.92 (m, 2H). ¹³C NMR (100 MHz, DMSO-d₆) δ 175.2, 157.2, 135.6, 129.8, 128.1, 126.7, 58.4, 36.4. LC-MS (ESI) m/z: 191 [M+H]⁺, 163, 120. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₀H₁₁N₂O₂ 191.0815; Found: 191.0815. The procedure was repeated by substituting L-phenylalanine with the corresponding amino acid to obtain **H2b–c** and **H2e–f**.

General procedure for the synthesis of (*S*)-5-((2,5-dioxoimidazolidin-4-yl)methyl)-1*H*-imidazol-3-ium chloride (**H2d**):

A 30 mL microwave reactor vial was charged with L-histidine (5 mmol), distilled water (7 mL), and potassium cyanate (25 mmol) and irradiated in an Anton-Paar Monowave 400 microwave reactor at 80 °C for 1 hour. Upon completion of the *N*-carbamylation reaction, as confirmed by TLC analysis, the

reaction mixture was treated with concentrated hydrochloric acid (7 mL) and microwave irradiated at 80 °C for 15 min. The reaction mixture was neutralized to pH 7 using saturated sodium bicarbonate solution and extracted with ethyl acetate multiple times. The organic extracts were combined, dried with anhydrous sodium sulfate, and concentrated under reduced pressure to afford **H2d** as a white solid. Yield 70%. ¹H NMR (400 MHz, DMSO-d₆) δ 10.59 (s, 1H), 7.88 (s, 1H), 7.74 (s, 1H), 6.88 (s, 1H), 5.52 (s, 2H), 4.25 (t, *J* = 6 Hz, 1H), 2.95 (dd, *J* = 15, 4 Hz, 1H), 2.81 (dd, *J* = 15, 6 Hz, 1H). ¹³C NMR (100 MHz, DMSO-d₆) δ 175.5, 157.4, 134.6, 131.6, 117.0, 57.6, 28.8. LC-MS (ESI) m/z: 181 [M+H]⁺, 136. The procedure was repeated by substituting L-histidine with the corresponding amino acid to obtain **H2g**–**j**.

2.1 Characterization data

Carbamoyl-L-phenylalanine (H1a):

White solid. Yield 89%. $[\alpha]_D^{20}$ -33.4 (*c* 10, CH₃CN). ¹H NMR (400 MHz, DMSO-d₆) δ 7.28 (t, *J* = 7 Hz, 2H), 7.20 (m, 3H), 6.18 (d, *J* = 8 Hz, 1H), 5.62 (s, 2H), 4.33 (dd, *J* = 13, 8 Hz, 1H), 2.99 (dd, *J* = 13, 5 Hz, 1H), 2.84 (dd, *J* = 13, 8 Hz, 1H). ¹³C NMR (100 MHz, DMSO-d₆) δ 174.1, 158.4, 137.6, 129.4, 128.3, 126.6, 53.9, 37.7. LC-MS (ESI) m/z: 209 [M+H]⁺, 166, 120. Data in accordance with literature [1].²⁰

(S)-5-(4-Hydroxybenzyl)imidazolidine-2,4-dione (H2b):

White solid. Yield 84%. $[\alpha]_D^{20}$ -90.5 (*c* 10, acetone). ¹H NMR (400 MHz, DMSO-d₆) δ 10.39 (1H, s), 9.27 (s, 1H), 7.87 (s, 1H), 6.96 (d, *J* = 8 Hz, 2H), 6.64 (d, *J* = 8 Hz, 2H), 4.23 (q, *J* = 5 Hz, 1H), 2.80 (d, *J* = 5 Hz, 2H). ¹³C NMR (100 MHz, DMSO-d₆) δ 175.4, 157.3, 156.1, 130.8, 125.5, 114.9, 58.7, 35.6. LC-MS (ESI) m/z: 207 [M+H]⁺, 179, 136, 107. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₀H₁₁N₂O₃ 207.0764; Found: 207.0759.

(S)-5-((1H-Indol-2-yl)methyl)imidazolidine-2,4-dione (H2c):

White solid. Yield 71%. $[\alpha]_{D}^{20}$ -97.1 (*c* 10, CH₃CN). ¹H NMR (400 MHz, DMSO-d₆) δ 10.90 (s, 1H), 10.37 (s, 1H), 7.91 (s, 1H), 7.55 (d, *J* = 8 Hz, 1H), 7.32 (d, *J* = 8 Hz, 1H), 7.12 (d, *J* = 2 Hz, 1H), 7.05 (td, *J* = 7, 1 Hz, 1H), 6.97 (td, *J* = 7, 1 Hz, 1H), 4.30 (dd, *J* = 4, 1 Hz, 1H), 3.06 (d, *J* = 4 Hz, 2H). ¹³C NMR (100 MHz, DMSO-d₆) δ 175.8, 157.5, 135.9, 127.5, 124.2, 120.9, 118.7, 118.4, 111.3, 108.0, 58.4, 26.5. LC-MS (ESI) m/z: 230 [M+H]⁺, 130. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₂H₁₂N₃O₂ 230.0924; Found: 230.0926.

(S)-5-Phenylimidazolidine-2,4-dione (H2e):

White solid. Yield 48%. $[\alpha]_{D}^{20}$ -136.0 (*c* 10, CH₃CN). ¹H NMR (400 MHz, DMSO-d₆) δ 10.81 (s, 1H), 8.41 (s, 1H), 7.32 – 7.43 (m, 5H), 5.16 (s, 1H). ¹³C NMR (100 MHz, DMSO-d₆) δ 174.3, 157.6, 136.1, 128.7, 128.3, 126.8, 61.3. LC-MS (ESI) m/z: 177 [M+H]⁺, 149, 106. Data in accordance with literature [2].²¹

(S)-5-Isobutylimidazolidine-2,4-dione (H2f):

White solid. Yield 34%. $[\alpha]_{D}^{20}$ -78.0 (*c* 10, CH₃CN). ¹H NMR (400 MHz, DMSO-d₆) δ 10.59 (s, 1H), 8.01 (s, 1H), 3.99 (m, 1H), 1.75 (m, 1H), 1.34 – 1.51 (m, 2H), 0.87 (t, *J* = 6 Hz, 6H). ¹³C NMR (100 MHz, DMSO-d₆) δ 176.6, 157.5, 56.2, 40.8, 24.2, 23.2, 21.5. LC-MS (ESI) m/z: 157 [M+H]⁺, 129. Data in accordance with literature [2].²¹

(S)-5-((R)-1-Hydroxyethyl)imidazolidine-2,4-dione (H2g):

White solid. Yield 78%. $[\alpha]_{D}^{20}$ -103.4 (*c* 10, CH₃CN). ¹H NMR (400 MHz, DMSO-d₆) δ 7.89 (s, 1H), 5.48 (s, 1H), 4.93 (d, *J* = 6 Hz, 1H), 3.85 – 3.92 (m, 1H), 3.82 (dd, *J* = 3, 1 Hz, 1H), 1.12 (d, *J* = 6 Hz, 3H). ¹³C NMR (100 MHz, DMSO-d₆) δ 174.8, 158.2, 65.2, 63.9, 20.3. LC-MS (ESI) m/z: 145 [M+H]⁺, 101. Data in accordance with literature [3].²²

(S)-5-Isopropylimidazolidine-2,4-dione (H2h):

White solid. Yield 86%. $[\alpha]_D^{20}$ -85.9 (*c* 10, CH₃CN). ¹H NMR (400 MHz, DMSO-d₆) δ 10.56 (s, 1H), 7.89 (s, 1H), 3.89 (dd, *J* = 4, 1 Hz, 1H), 1.94 – 2.02 (m, 1H), 0.93 (d, *J* = 7 Hz, 3H), 0.79 (d, *J* = 7 Hz, 3H). ¹³C NMR (100 MHz, DMSO-d₆) δ 175.5, 157.9, 62.8, 29.6, 18.6, 15.9. LC-MS (ESI) m/z: 143 [M+H]⁺, 115. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₆H₁₁N₂O₂ 143.0815; Found: 143.0814.

(S)-5-Methylimidazolidine-2,4-dione (H2i):

White solid. Yield 83%. $[\alpha]_D^{20}$ -23.2 (*c* 10, CH₃CN). ¹H NMR (400 MHz, DMSO-d₆) δ 10.58 (s, 1H), 7.88 (s, 1H), 4.02 (q, *J* = 7 Hz, 1H), 1.21 (d, *J* = 7 Hz, 3H). ¹³C NMR (100 MHz, DMSO-d₆) δ 176.9, 157.2, 53.4, 17.3. LC-MS (ESI) m/z: 115 [M+H]⁺. Data in accordance with literature [2].²¹

(S)-5-(2-(Methylthio)ethyl)imidazolidine-2,4-dione (H2j):

White solid. Yield 59%. $[\alpha]_{D}^{20}$ -49.9 (*c* 10, CH₃CN). ¹H NMR (400 MHz, DMSO-d₆) δ 10.66 (s, 1H), 8.02 (s, 1H), 4.10 (qd, *J* = 4, 1 Hz, 1H), 2.53 (m, 2H), 2.05 (s, 3H), 1.87 – 1.97 (m, 1H), 1.71 – 1.80 (m, 1H). ¹³C NMR (100 MHz, DMSO-d₆) δ 175.9, 157.4, 56.6, 31.0, 28.8, 14.5. LC-MS (ESI) m/z: 175 [M+H]⁺, 147, 127. Data in accordance with literature [2].²¹

3. NMR and HRMS Spectra

¹H NMR spectrum of carbamoyl-L-phenylalanine (**H1a**)

¹³C NMR spectrum of carbamoyl-L-phenylalanine (H1a)

Mass spectrum of carbamoyl-L-phenylalanine (H1a)

¹H NMR spectrum of (*S*)-5-benzylimidazolidine-2,4-dione (**H2a**)

¹³C NMR spectrum of (S)-5-benzylimidazolidine-2,4-dione (H2a)

Mass spectrum of (S)-5-benzylimidazolidine-2,4-dione (H2a)

¹H NMR spectrum of (*S*)-5-(4-hydroxybenzyl)imidazolidine-2,4-dione (**H2b**)

¹³C NMR spectrum of (S)-5-(4-hydroxybenzyl)imidazolidine-2,4-dione (H2b)

HRMS spectrum of (S)-5-(4-hydroxybenzyl)imidazolidine-2,4-dione (H2b)

Mass spectrum of (S)-5-(4-hydroxybenzyl)imidazolidine-2,4-dione (H2b)

¹H NMR spectrum of (*S*)-5-((1*H*-indol-2-yl)methyl)imidazolidine-2,4-dione (**H2c**)

¹³C NMR spectrum of (*S*)-5-((1*H*-indol-2-yl)methyl)imidazolidine-2,4-dione (**H2c**)

HRMS spectrum of (S)-5-((1H-indol-2-yl)methyl)imidazolidine-2,4-dione (H2c)

150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 Counts vs. Mass-to-Charge (m/z)

0 100

Mass spectrum of (S)-5-((1H-indol-2-yl)methyl)imidazolidine-2,4-dione (H2c)

¹H NMR spectrum of (S)-5-((2,5-dioxoimidazolidin-4-yl)methyl)-1H-imidazol-3-ium chloride (H2d)

¹³C NMR spectrum of (S)-5-((2,5-dioxoimidazolidin-4-yl)methyl)-1H-imidazol-3-ium chloride (H2d)

Mass spectrum of (S)-5-((2,5-dioxoimidazolidin-4-yl)methyl)-1H-imidazol-3-ium chloride (H2d)

¹H NMR spectrum of (*S*)-5-phenylimidazolidine-2,4-dione (**H2e**)

¹³C NMR spectrum of (S)-5-phenylimidazolidine-2,4-dione (H2e)

Mass spectrum of (S)-5-phenylimidazolidine-2,4-dione (H2e)

¹H NMR spectrum of (*S*)-5-isobutylimidazolidine-2,4-dione (**H2f**)

¹³C NMR spectrum of (*S*)-5-isobutylimidazolidine-2,4-dione (**H2f**)

¹H NMR spectrum of (*S*)-5-((*R*)-1-hydroxyethyl)imidazolidine-2,4-dione (**H2g**)

¹³C NMR spectrum of (S)-5-((R)-1-hydroxyethyl)imidazolidine-2,4-dione (H2g)

Mass spectrum of (S)-5-((R)-1-hydroxyethyl)imidazolidine-2,4-dione (H2g)

¹H NMR spectrum of (S)-5-isopropylimidazolidine-2,4-dione (**H2h**)

¹³C NMR spectrum of (S)-5-isopropylimidazolidine-2,4-dione (H2h)

HRMS spectrum of (S)-5-isopropylimidazolidine-2,4-dione (H2h)

Mass spectrum of (S)-5-isopropylimidazolidine-2,4-dione (H2h)

¹H NMR spectrum of (*S*)-5-methylimidazolidine-2,4-dione (**H2i**)

¹³C NMR spectrum of (S)-5-methylimidazolidine-2,4-dione (H2i)

¹H NMR spectrum of (S)-5-(2-(methylthio)ethyl)imidazolidine-2,4-dione (H2j)

Mass spectrum of (S)-5-(2-(methylthio)ethyl)imidazolidine-2,4-dione (H2j)

4. Chromatograms of compounds

Aca Openator		
Acq. Operator	•	STSTEM Seq. Line : 1
Acq. Instrument	:	HPLC 1260 Location : Vial 1
Injection Date	:	4/7/2024 3:32:06 PM Inj: 1
		Inj Volume : 10.000 µl
Method	:	C:\CHEM32\1\DATA\CHANG WEI JIN H2A 2024-07-04 15-30-36\HYDANTOIN.M (
		Sequence Method)
Last changed	:	4/7/2024 3:30:45 PM by SYSTEM
DAD1 A, Si	ig=	210,4 Ref=off (CHANG WEI JIN H2A 2024-07-04 15-30-36\001-0101.D)
mAU	326	
1750	di.	
1500		
1250 -		
1000 -		
750 -		
500-	2	9
250	ŧ	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
0	F.	
		5 10 15 20 25 min

Signal 1: DAD1 A, Sig=210,4 Ref=off

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	2.403	BV	0.0480	20.58212	6.67029	0.1715
2	2.526	VB	0.0913	1.19494e4	2133.56299	99.5478
3	5.847	BB	0.1119	7.91664	1.07548	0.0660
4	7.089	BB	0.1312	25.78545	3.03190	0.2148
Total	s :			1.20037e4	2144.34066	

Chromatogram and HPLC integrations of H2a.

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	2.358	BV	0.0581	5826.54150	1543.05322	95.9929
2	2.590	VB	0.0581	118.87553	31.47240	1.9585
3	2.734	BB	0.0524	5.85003	1.77786	0.0964
4	2.973	BV	0.0584	9.89534	2.59918	0.1630
5	3.044	VV	0.0557	5.55367	1.48331	0.0915
6	3.240	VB	0.1110	14.20711	1.95022	0.2341
7	3.833	BB	0.0822	37.24251	6.98077	0.6136
8	6.945	BV	0.1061	15.36413	2.18387	0.2531
9	7.096	VB	0.1371	36.23384	3.94834	0.5970

Totals :

6069.76367 1595.44917

Chromatogram and HPLC integrations of H2b.

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	2.438	BV	0.0583	8261.82910	2176.68433	99.6956
2	2.709	VB	0.0679	9.51642	2.05883	0.1148
3	2.980	BB	0.0703	15.70722	3.37788	0.1895

Totals :

8287.05273 2182.12103

Chromatogram and HPLC integrations of H2c.


```
Signal 1: DAD1 A, Sig=210,4 Ref=off
```

Peak	RetTime	Туре	Width	Area	Height	Area
# 	[min]		[min] 	[mAU*s]	[mAU]	%
1	2.298	BB	0.0909	1.19004e4	2074.88818	99.1798
2	3.198	BV	0.0828	9.44985	1.65101	0.0788
3	3.420	VB	0.0741	65.08628	13.05972	0.5424
4	4.629	BB	0.0908	6.53019	1.10785	0.0544
5	6.885	BB	0.1238	17.34209	2.15695	0.1445

```
Totals :
```

1.19988e4 2092.86372

Chromatogram and HPLC integrations of **H2d**.

Signal 1: DAD1 A, Sig=210,4 Ref=off

Peak I #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	2.462	BV	0.0866	1.15082e4	2145.84326	98.9389
2	2.749	VV	0.0870	36.11869	5.93891	0.3105
3	2.897	VV	0.0545	7.37558	1.93413	0.0634
4	2.999	VB	0.0673	49.22173	11.20341	0.4232
5	7.148	BB	0.1362	30.71308	3.43865	0.2640
Totals	5:			1.16317e4	2168.35836	

Chromatogram and HPLC integrations of **H2e**.

	Sig=	210 4 8	of-o	ff (001	1 0101	D)															
DADTA																					
mAU –	<u>8</u>																				
1750 -	di.																				
1500 -																					
1250 -																					
1000 -																					
750 -																					
500 -																					
250 -	433	573	927	846	221																
0	- qil	nini	4	ю,	1																
			5		1	1	10		i	1		15			20			25	1		min

Signal 1: DAD1 A, Sig=210,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	2.433	BB	0.0740	15.73734	2.96331	0.1829
2	2.594	BB	0.0675	8455.26465	1993.84448	98.2673
3	3.573	VB	0.1246	21.32673	2.33320	0.2479
4	3.935	BB	0.1093	22.54987	3.01346	0.2621
5	4.927	BB	0.1084	21.42057	2.82658	0.2490
6	5.846	BB	0.1085	16.58592	2.40312	0.1928
7	7.221	BB	0.1300	51.46523	6.12673	0.5981

Totals :

8604.35031 2013.51088

Chromatogram and HPLC integrations of H2f.

Signal 1: DAD1 A, Sig=210,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area	
#	[min]		[min]	[mAU*s]	[mAU]	%	
1	2.261	BV	0.0692	55.54348	11.03689	0.8953	
2	2.355	VV	0.0588	6015.70117	1639.38928	96.9619	
3	2.720	BV	0.0812	16.12285	2.97426	0.2599	
4	2.886	VB	0.0849	9.75303	1.65237	0.1572	
5	3.451	BB	0.1131	13.81607	1.69416	0.2227	
6	3.806	BB	0.1069	15.91802	2.13667	0.2566	
7	4.705	BB	0.1313	36.14483	3.65674	0.5826	
8	5.659	BB	0.1050	16.47449	2.43191	0.2655	
9	7.001	BB	0.1359	24.71371	2.77591	0.3983	

Totals :

6204.18764 1667.74819

Chromatogram and HPLC integrations of H2g.

Signal 1: DAD1 A, Sig=210,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area		
#	[min]		[min]	[mAU*s]	[mAU]	%		
1	2.422	BV	0.0646	7871.98828	1968.86609	98.3380		
2	2.851	VB	0.1019	23.49626	3.19237	0.2935		
3	3.308	BV	0.0706	8.47418	1.81192	0.1059		
4	3.405	VB	0.0874	11.54817	1.88816	0.1443		
5	3.764	BB	0.1185	15.21869	1.80299	0.1901		
6	4.635	BB	0.1022	61.07473	8.66549	0.7630		
7	5.590	BB	0.1048	13.23519	1.96022	0.1653		

Totals :

8005.03551 1988.18724

Chromatogram and HPLC integrations of H2h.

Signal 1: DAD1 A, Sig=210,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	2.400	BV	0.0699	8741.37305	2044.75537	97.5539
2	2.889	VV	0.1088	30.63241	3.76871	0.3419
3	3.148	VV	0.1633	28.19417	2.23343	0.3146
4	3.451	VB	0.1410	32.44205	3.07816	0.3621
5	3.832	BB	0.1322	16.16709	1.71199	0.1804
6	4.789	BB	0.1154	16.98713	2.07756	0.1896
7	5.693	BB	0.1082	14.48612	2.05597	0.1617
8	7.058	BB	0.1308	49.59040	5.97726	0.5534
9	22.902	BB	0.3420	30.68933	1.32613	0.3425

Totals :

8960.56175 2066.98460

Chromatogram and HPLC integrations of H2i.

Signal 1: DAD1 A, Sig=210,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
		-				
1	2.108	BV	0.2010	21.04398	1.64822	0.2402
2	2.441	VV	0.0691	8506.89258	2020.25354	97.0935
3	2.889	VV	0.1384	45.47044	4.26387	0.5190
4	3.145	VV	0.1424	23.84449	2.23623	0.2721
5	3.360	VB	0.1439	49.40802	4.57715	0.5639
6	3.835	BB	0.1245	15.77759	1.79521	0.1801
7	4.726	BB	0.1003	84.84641	12.33343	0.9684
8	5.708	BB	0.1068	14.26201	2.05921	0.1628
Total	s :			8761.54551	2049.16687	

Chromatogram and HPLC integrations of H2j.

5. References

- Chin, E.-Z.; Tan, S.-P.; Liew, S.-Y.; Kurz, T. *Malaysian J. Chem.* 2021, 23, 19–25. doi:10.1055/a-1330-4198
- 2. Wang, M. X.; Lin, S. J. J. Org. Chem. 2002, 67, 6542–6545. doi:10.1021/jo0256282
- 3. Harada, K. Nature 1963, 4912, 1201. doi:10.1038/2001201a0