Straightforward chemical desymmetrisation of cis-(\pm)-4-O-protected-cyclopent-2-enol using resolving agents on column chromatography

Bemba Sidi Mohamed, Suzanne Peyrottes, Jean-Pierre Uttaro, Christophe Mathé*

Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, Université de Montpellier, CNRS, ENSCM, cc 1705, Site Triolet, Place Eugène Bataillon

34095 Montpellier cedex 5, France.

E-mail: christophe.mathe@umontpellier.fr

Table of contents

Description of general conditions S2
Description of general procedure for flash purification system S2
Procedure for synthesis S2

Spectra of compounds
S7-S13

General conditions

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded at ambient temperature on a Bruker Avance III HD 400 and 500 MHz . Chemical shifts (δ) are quoted in parts per million (ppm) referenced to the residual solvent peak, (CDCl_{3} fixed at 7.26 ppm and 77.16 ppm) relative to tetramethylsilane (TMS). Coupling constants, J, are reported in Hertz. ESI Mass and High Resolution Mass spectra were recorded in the positive ion mode on a Micromass Q-TOF. Thin-layer chromatography was performed on pre-coated aluminum sheets of Silica 60 F254 (Merck, Art. 5554), visualization of products being accomplished by UV absorbance and by charring with anisaldehyde solution and heating. Chromatography was performed on Merck Silica gel $60(40-63 \mu \mathrm{~m})$.

Flash purification general protocol

Biotage isolera flash purification system (Isolera Four) was used for the separation of the diastereoisomers. Buchi columns (FlashPure Silica) ($40 \mathrm{~g}, 80 \mathrm{~g}$ and 120 g) were employed. The Column Volume (CV) was $50 \mathrm{~mL}, 110 \mathrm{~mL}$ and 155 mL , respectively. The flow rate was $30 \mathrm{~mL} / \mathrm{min}$ for column Buchi $(40 \mathrm{~g})$ or $60 \mathrm{ml} / \mathrm{min}$ for column Buchi $(80 \mathrm{~g}$ and 120 g$)$.
(\pm)-4-((tert-butyldimethylsilyl)oxycyclopent-2-enol. (\pm)-1

Compound ($\mathbf{\pm}$)-1 was obtained in three steps from commercially available furfuryl alcohol following a reported procedure. ${ }^{1}$ The NMR spectra were identical to those previously reported.

Procedure for synthesis

F_{1}

F_{3}

To a mixture of racemic 4-((tert-butyldimethylsilyl)oxy)cyclopent-2-enol (1 g, 4.66 mmol$)$, DCC (1.45 g , 7 mmol) and DMAP ($57 \mathrm{mg}, 0.46 \mathrm{mmol}$) in dry DCM (15 mL) under argon was added (R)-O-acetyl mandelic acid ($1.36 \mathrm{~g}, 7 \mathrm{mmol}$). After 2 hours, a total conversion was observed by TLC. After filtration and evaporation of solvent, a preliminary purification on silica gel column chromatograpy was made with PE/DCM (1/1: v/v) to give the mixture of diastereoisomers ($1.7 \mathrm{~g}, 93 \%$).

Purification of 500 mg of the mixture of diastereoisomers with Biotage flash purification with Buchi column ($80 \mathrm{~g}, 40 \mu \mathrm{~m}$) using as eluent petroleum ether and dichloromethane (2 CV at $0 \%, 7 \mathrm{CV}$ at 20 $\%, 10 \mathrm{CV}$ at 30% and 15 CV at 50% of dichloromethane) gave three fractions (F_{1} : 245 mg ; F_{2} (mixture): $15 \mathrm{mg} ; \mathrm{F}_{3}: 240 \mathrm{mg}$).

[^0]
(-)-(R)-(1R,4S)-4-((tert-butyldimethylsilyl)oxy)cyclopent-2-en-1-yl 2-acetoxy-2-phenylacetate
${ }^{1} \mathrm{H}$ NMR (400 MHz, Chloroform-d) $\delta 7.46$ (dd, $J=6.7,2.9 \mathrm{~Hz}, 2 \mathrm{H}$), $7.40-7.37(\mathrm{~m}, 3 \mathrm{H}), 5.94(\mathrm{dt}, J=5.7$, $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.89(\mathrm{~s}, 1 \mathrm{H}), 5.72(\mathrm{dt}, J=5.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.50(\mathrm{ddt}, J=7.4,5.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.72-4.68(\mathrm{~m}$, $1 \mathrm{H}), 2.80(\mathrm{dt}, \mathrm{J}=13.9,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H}), 1.66(\mathrm{dt}, J=13.9,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.08(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13}$ C NMR (101 MHz, Chloroform-d) $\delta 170.5,168.8,139.5,133.9,130.6,129.3,128.9,127.7,78.3,74.9$, 74.8, 41.1, 26.0, 20.9, 18.3, -4.5, -4.6.
$[\alpha]_{D}^{20}=-21.1^{\circ}\left(\mathrm{c}=1.00, \mathrm{CHCl}_{3}\right)$.
$\mathrm{MS}\left(\mathrm{ESI}^{+}\right): \mathrm{m} / \mathrm{z}=413.2(\mathrm{M}+\mathrm{Na})^{+}$.
HRMS (ESI $)$: calculated for $\mathrm{C}_{21} \mathrm{H}_{31} \mathrm{O}_{5} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}$: 391.1935 ; Found : 391.1939.

(-)-(R)-(1S,4R)-4-((tert-butyldimethylsilyl)oxy)cyclopent-2-en-1-yl 2-acetoxy-2-phenylacetate
${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.48-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.36(\mathrm{~m}, 3 \mathrm{H}), 5.97(\mathrm{dt}, J=5.7,1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 5.90-5.88(\mathrm{~m}, 2 \mathrm{H}), 5.54-5.50(\mathrm{~m}, 1 \mathrm{H}), 4.67(\mathrm{dddd}, J=8.0,4.5,2.2,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{dt}, J=13.8$, $7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H}), 1.41(\mathrm{dt}, J=13.9,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (101 MHz, Chloroform-d) $\delta 170.5,168.7,139.5,133.8,130.8,129.3,128.9,127.7,78.3,74.9$, 74.7, 40.8, 26.0, 20.9, 18.3, -4.5, -4.6.
$[\alpha]_{D}^{20}=-60.8^{\circ}\left(\mathrm{c}=1.00, \mathrm{CHCl}_{3}\right)$.
MS (ESI ${ }^{+}$) : m/z = $413.2(\mathrm{M}+\mathrm{Na})^{+}$.
HRMS (ESI $)$: calculated for $\mathrm{C}_{21} \mathrm{H}_{31} \mathrm{O}_{5} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}: 391.1935$; Found : 391.1937.

From \mathbf{F}_{1}

From \mathbf{F}_{3}

To a solution of diastereoisomer F_{1} or $F_{3}(400 \mathrm{mg}, 1.02 \mathrm{mmol})$ in $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}: 1 / 1 \mathrm{v} / \mathrm{v}$ was added, at room temperature, lithium hydroxide ($123 \mathrm{mg}, 5.12 \mathrm{mmol}$). After 1 hour under stirring, the
completion of reaction was observed by TLC. A saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$ and $\mathrm{DCM}(20 \mathrm{~mL})$ were added, the layers were separated and the aqueous layer was washed with DCM ($4 \times 20 \mathrm{~mL}$). The organic layers were combined, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was evaporated. After a short purification on silica gel (PE/EtOAc: 1/0 to 4/1), the products were obtained with 95 \% (from $\mathrm{F}_{1}, 208$ mg) and 95% (from $\mathrm{F}_{3}, 208 \mathrm{mg}$).

(-)-(1R,4S)-4-((tert-butyldimethylsilyl)oxy)cyclopent-2-enol
${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 5.94(\mathrm{dt}, J=5.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.88(\mathrm{dt}, J=5.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.69-$ $4.62(\mathrm{~m}, 1 \mathrm{H}), 4.60-4.57(\mathrm{~m}, 1 \mathrm{H}), 2.68(\mathrm{dt}, \mathrm{J}=13.9,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.51(\mathrm{dt}, J=13.7,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 0.89(\mathrm{~s}$, $9 \mathrm{H}), 0.09$ ($\mathrm{s}, 6 \mathrm{H}$).
${ }^{13}$ C NMR (101 MHz, Chloroform-d) δ 137.1, 135.7, 75.3, 75.3, 44.8, 26.0, 18.3, -4.5.
$[\alpha]_{D}^{20}=-21.1^{\circ}\left(\mathrm{c}=1.00, \mathrm{CHCl}_{3}\right)$.
MS (ESI $\left.{ }^{+}\right): m / z=215.1(M+H)^{+}$.
HRMS (ESI ${ }^{+}$: calculated for $\mathrm{C}_{11} \mathrm{H}_{23} \mathrm{O}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}: 215.1469$; Found : 215.1462.

(+)-(1S,4R)-4-((tert-butyldimethylsilyl)oxy)cyclopent-2-enol
$[\alpha]_{D}^{20}=+21.4^{\circ}\left(\mathrm{c}=1.00, \mathrm{CHCl}_{3}\right)$.

To a mixture of racemic 4-((tert-butyldimethylsilyl)oxy)cyclopent-2-enol ($300 \mathrm{mg}, 1.4 \mathrm{mmol}$), DCC $(434 \mathrm{mg}, 2.1 \mathrm{mmol})$ and DMAP ($17 \mathrm{mg}, 0.14 \mathrm{mmol}$) in dry DCM (5 mL) under atmosphere of argon
was added Phthalamic acid derivative ($565 \mathrm{mg}, 2.1 \mathrm{mmol}$). After 6 days of reaction, the total conversion was not observed. After filtration and evaporation of solvent, purification on silica gel column chromatography with $\mathrm{DCM} / \mathrm{MeOH}(1 / 0$ to $98 / 2)$ gave the mixture of diastereoisomers (270 $\mathrm{mg}, 41$ \%).
${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform-d) $\delta 7.90-7.85$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{Dia} 1+\mathrm{Dia} 2$), 7.53-7.47 (m, 2H, Dia1 + Dia2), 7.47-7.39 (m, 8H, Dia1 + Dia2), 7.36 (ddd, J= 8.1, 6.8, 2.0 Hz, 4H, Dia1 + Dia2), 7.28 (dt, J=7.7, 1.7 Hz, $2 H, \operatorname{Dia1}+\operatorname{Dia} 2), 6.11$ (t, J = 8.6 Hz, 2H, Dia1 + Dia2), 6.01 (dt, J = 5.6, 1.7 Hz, 1H, Dia1 or Dia2), 5.99 (dt, J = 5.6, 1.7 Hz, 1H, Dia1 or Dia2), 5.97 (dt, J = 5.6, 1.6 Hz, 1H, Dia1 or Dia2), 5.91 (dt, J = 5.6, 1.6 Hz, 1H, Dia1 or Dia2), 5.69 (dddd, $J=8.7,5.9,2.9,1.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Dia1}+\mathrm{Dia} 2$), 5.33 (dtd, $J=14.4,7.1,4.1$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{Dia} 1+\mathrm{Dia} 2), 4.76$ (tdt, J = 5.7, 2.6, $1.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Dia1}+\mathrm{Dia} 2$), 2.90 (dtd, J=13.7, 7.3, 2.8 Hz, 2H, Dia1 + Dia2), 1.75 (ddt, J = 13.8, 6.8, 5.3 Hz, 2H, Dia1 + Dia2), 1.61 (d, J = 6.9 Hz, 6H, Dia1 + Dia2), 0.91 ($\mathrm{s}, 9 \mathrm{H}$, Dia1 or Dia2), 0.90 ($\mathrm{s}, 9 \mathrm{H}$, Dia1 or Dia2), 0.10 ($\mathrm{t}, \mathrm{J}=2.4 \mathrm{~Hz}, 12 \mathrm{H}, \mathrm{Dia1}+\mathrm{Dia} 2$).
${ }^{13} \mathrm{C}$ NMR (126 MHz , Chloroform-d) $\delta 168.4,168.3,166.5,166.5,143.1,143.1,139.3,138.4,138.3$, $132.0,131.9,131.1,131.1,130.3,130.3,129.7,129.7,129.6,129.4,128.8,127.7,127.7,127.5,126.5$, 126.5, 78.2, 75.0, 49.4, 49.4, 41.2, 41.1, 26.0, 26.0, 21.7, 21.7, 18.3, 18.3, -4.5, -4.6.

MS (ESI $\left.{ }^{+}\right): \mathrm{m} / \mathrm{z}=466.2(\mathrm{M}+\mathrm{H})^{+}$.
HRMS (ESI ${ }^{+}$: calculated for $\mathrm{C}_{27} \mathrm{H}_{36} \mathrm{NO}_{4} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}: 466.2408$; Found : 466.2412.

(R)-(1R,4S)-4-((tert- butyldimethylsilyl)oxy)cyclopent-2-en-1-yl	

To a mixture of racemic 4-((tert-butyldimethylsilyl)oxy)cyclopent-2-enol ($300 \mathrm{mg}, 1.4 \mathrm{mmol}$), DCC ($434 \mathrm{mg}, 2.1 \mathrm{mmol}$) and DMAP ($17 \mathrm{mg}, 0.14 \mathrm{mmol}$) in dry DCM (5 mL) under atmosphere of argon was added phenylalanine derivative ($557 \mathrm{mg}, 2.1 \mathrm{mmol}$). After 3 h of reaction, the total conversion was observed with TLC. After filtration and evaporation of solvent, purification on silica gel column chromatography with $\mathrm{DCM} / \mathrm{MeOH}(1 / 0$ to $98 / 2$) gave the mixture of diastereoisomers ($637 \mathrm{mg}, 96$ \%).
${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform-d) δ 7.35-7.19 (m, 6H, Dia1 + Dia2), 7.15 (dt, J=6.9, 2.7 Hz, 4H, Dia1 + Dia2), 5.99 (ddd, $J=6.3,4.0,2.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Dia1}+\mathrm{Dia} 2$), 5.83 (dt, J=5.6, 1.6 Hz, 1H, Dia1 or Dia2), 5.79 (dt, J = 5.8, 1.7 Hz, 1H, Dia1 or Dia2), 5.48 (tt, J=7.5, 3.4 Hz, 2H, Dia1 + Dia2), 4.97 (dd, J = 8.3, 5.4 Hz, 2H, Dia1 + Dia2), 4.80-4.64 (m, 2H, Dia1 + Dia2), 4.56 (h, J = 5.8 Hz, 2H, Dia1 + Dia2), 3.14-2.02 (m, 4H, Dia1 + Dia2), 2.76 (dq, J = 13.9, $7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Dia} 1+\mathrm{Dia} 2$), $1.60-1.50$ (m, 2H, Dia1 + Dia2), 1.42 (d, J = $2.6 \mathrm{~Hz}, 18 \mathrm{H}$, Dia1 + Dia2), 0.90 (s, 18H, Dia1 + Dia2), 0.09 (s, 6H, Dia1), 0.09 (s, 6H, Dia2).
${ }^{13} \mathrm{C}$ NMR (126 MHz, Chloroform-d) $\delta 171.7,171.6,155.2,139.5,139.4,136.1,130.9,130.8,129.6$, $129.6,128.6,127.1,80.0,78.1,78.0,74.9,54.5,41.1,38.3,28.4,26.0,18.3,-4.5,-4.5$.

MS (ESI ${ }^{+}$) : m/z = $462.3(\mathrm{M}+\mathrm{H})^{+}$.
HRMS (ESI ${ }^{+}$: calculated for $\mathrm{C}_{25} \mathrm{H}_{40} \mathrm{NO}_{5} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}: 462.2670$; Found : 466.2677.

 ($2 R, 3 R$)-2,3-bis(benzoyloxy)-4-(((1R,4S)-4-((tert-butyldimethylsilyl)oxy)cyclopent-2-en-1-yl)oxy)-4-oxobutanoic acid	 (2R,3R)-2,3-bis(benzoyloxy)-4-(((1S,4R)-4-((tert-butyldimethylsilyl)oxy)cyclopent-2-en-1-yl)oxy)-4oxobutanoic acid

To a mixture of racemic 4-((tert-butyldimethylsilyl)oxy)cyclopent-2-enol ($300 \mathrm{mg}, 1.4 \mathrm{mmol}$), DCC ($434 \mathrm{mg}, 2.1 \mathrm{mmol}$) and DMAP ($17 \mathrm{mg}, 0.14 \mathrm{mmol}$) in dry DCM (5 mL) under atmosphere of argon was added tartric acid derivative ($527 \mathrm{mg}, 2.1 \mathrm{mmol}$). After 5 days of reaction, the total conversion was not observed. After filtration and evaporation of solvent, purification on silica gel column chromatography with $\mathrm{DCM} / \mathrm{MeOH}(1 / 0$ to $98 / 2$) gave the mixture of diastereoisomers ($488 \mathrm{mg}, 63$ \%).
${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform-d) $\delta 8.15-8.05$ ($\mathrm{m}, 8 \mathrm{H}, \mathrm{Dia} 1+\mathrm{Dia} 2$), 7.58 (tdd, $J=8.3,6.2,1.5 \mathrm{~Hz}, 4 \mathrm{H}$, Dia1 + Dia2), 7.44 (qd, J = 8.0, 3.0 Hz, 8H, Dia1 + Dia2), 6.01-5.95 (m, 4H, Dia1 + Dia2), 5.93 (dt, J = $5.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}$, Dia1 or Dia2), 5.87 (dt, J = 5.6, 1.7 Hz, 1H, Dia1 or Dia2), 5.82 (dt, J = 5.6, 1.6 Hz, 1H, Dia1 or Dia2), 5.67 (dt, J = 5.7, 1.6 Hz, 1H, Dia1 or Dia2), 5.60-5.46 (m, 2H, Dia1 + Dia2), 4.65 (ddt, J = $6.9,4.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Dia1}$ or Dia2), 4.63-4.56 (m, 1H, Dia1 + Dia2), 2.77 ($\mathrm{dt}, \mathrm{J}=13.7,7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Dia}$ or Dia2), 2.65 (dt, J = 14.3, 7.3 Hz, 1H, Dia1 or Dia2), 1.66 ($\mathrm{dt}, J=13.8,5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Dia1}$ or Dia2), 1.44 (dt, $J=13.9,5.1 \mathrm{~Hz}, 1 \mathrm{H}$, Dia1 or Dia2), 0.86 ($\mathrm{s}, 9 \mathrm{H}$, Dia1 or Dia2), 0.81 ($\mathrm{s}, 9 \mathrm{H}$, Dia1 or Dia2), 0.04 (d, J = 3.3 Hz, 6H, Dia1 or Dia2), -0.03 (d, J=21.1 Hz, 6H, Dia1 or Dia2).
${ }^{13}$ C NMR (126 MHz, Chloroform-d) $\delta 176.6,168.9,168.8,165.8,165.8,165.4,165.4,165.2,165.1$, $139.6,133.7,133.6,130.3,130.2,130.2,130.1,128.8,128.7,128.7,128.6,128.5,128.5,78.8,74.8$, 74.7, 71.8, 71.4, 71.4, 40.8, 40.7, 25.9, 25.8, 18.2, 18.1, -4.7, -4.7, -4.8, -4.8.

MS (ESI $) ~: ~ m / z=553.2(\mathrm{M}-\mathrm{H})^{-}$.
HRMS (ESI $)$: calculated for $\mathrm{C}_{29} \mathrm{H}_{33} \mathrm{O}_{9} \mathrm{Si}[\mathrm{M}-\mathrm{H}]^{-}$: 553.1899 ; Found : 553.1905.
N

[^1]

[^2]

(

T																
150	140	130	120	110	100	90	80	$\begin{aligned} & 70 \\ & \text { f1 (ppm) } \end{aligned}$	60	50	40	30	20	10	0	-10

(

[^3]| | | | | | $\underset{\sim}{\sim}$ | | $\underset{\text { cim }}{\underset{\sim}{\text { a }}}$ | | | | | T"ずめ | | $\begin{aligned} & \text { 䓫 } \\ & \hline \end{aligned}$ | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 7.5 | 7.0 | 6.5 | | | 5.0 | 4.5 | | m）${ }^{3.5}$ | 3.0 | 2.5 | 2.0 | 1.5 | 1.0 | 0.5 | 0.0 |

\qquad

HOOC

[^0]: ${ }^{1}$ T. T. Curran, D. A. Hay, C. P. Koegel, Tetrahedron 1997, 53, 1983-2004.

[^1]: $\begin{array}{llllllllllllllllllllll}180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$

[^2]:

[^3]: $\begin{array}{llllllllllllllllllllll}180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & & & \end{array}$

