Supporting Information (SI)

Asymmetric Synthesis of CF_{2}-Aziridines Enabled by Combined Strong Bronsted Acid Catalysis

Xing-Fa Tan, Fa-Guang Zhang*, and Jun-An Ma*

Address: Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, and Tianjin Collaborative Innovation Centre of Chemical Science \& Engineering, Tianjin University, Tianjin 300072; and Joint School of NUS \& TJU, International Campus of Tianjin University, Fuzhou 350207, P. R. of China

Email: *Fa-Guang Zhang - zhangfg1987@tju.edu.cn
*Jun-An Ma - majun_an68@tju.edu.cn

* Corresponding author

Contents

1 General information 3
2 Experimental Section and HPLC Charts for chiral compounds 4 and 5 4
2.1 Typical procedure I: preparation of racemic Cis-CF2-aziridine 4 4
2.2 Typical procedure II: preparation of chiral $\mathrm{Cis}^{2}-\mathrm{CF}_{2}$-aziridine 4 4
2.3 Preparation of compound 5a 14
2.4 Preparation of compound 5 b. 15
2.5 Preparation of compound 5 c 17
3 References 18
4 NMR spectra of all the new compounds 19
5 X-Ray Crystallographic Data 36
5.1 The X-ray crystallographic structures for compound 4a. Crystal data have been deposited to CCDC, number 1983642 36
5.2 The X-ray crystallographic structures for compound 5c. Crystal data have been deposited to CCDC, number 1983643 37

1 General information

${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ were recorded on Bruker AV 400 MHz instrument at $400 \mathrm{MHz}\left({ }^{1} \mathrm{H}\right.$ NMR), $101 \mathrm{MHz}\left({ }^{13} \mathrm{C}\right.$ NMR), as well as $377 \mathrm{MHz}\left({ }^{19} \mathrm{~F}\right.$ NMR), or Bruker AV 500 MHz instrument at 500 MHz (${ }^{1} \mathrm{H}$ NMR). Chemical shifts were reported in ppm down field from internal $\mathrm{Me}_{4} \mathrm{Si}$ and external $\mathrm{CCl}_{3} \mathrm{~F}$, respectively. Multiplicity was indicated as follows: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), dd (doublet of doublet), ddd (doublet of doublet of doublet), tt (triplet of triplet), dt (triplet of doublet), ddt (triplet of doublet of doublet). Coupling constants were reported in Hertz (Hz). MS were recorded on a VG ZABHS spectrometer with the ESI resource. High resolution mass spectrometry (HRMS) spectra were obtained on a Bruker microTOF-QII instrument. Optical rotations were determined using an Autopol IV-T. HPLC analyses were carried out on a HewlettPackard Model HP 1200 instrument. X-ray structural analysis was conducted on a Bruker APEX-II CCD instrument.

Materials: Tetrahydrofuran (THF), diethyl ether ($\mathrm{Et}_{2} \mathrm{O}$) and toluene (Tol) were distilled from sodium/benzophenone prior to use; $\mathrm{CH}_{2} \mathrm{Cl}_{2}(\mathrm{DCM})$ and $\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$ (DCE) were distilled from CaH_{2}. MeCN was distilled from $\mathrm{P}_{2} \mathrm{O}_{5}$; All purchased reagents were used without further purification. Analytical thin layer chromatography was performed on 0.20 mm Qingdao Haiyang silica gel plates. Silica gel (200-300 mesh) (from Qingdao Haiyang Chem. Company, Ltd.) was used for flash chromatography. ((2-diazo-1,1difluoroethyl) sulfonyl) benzene (Ps-DFA) were prepared according to the reported procedure. ${ }^{1}$ Chiral disulfonimide catalysts CDSI-1, CDSI-2, CDSI-3, CDSI-4, CDSI5, CDSI-6 were synthesized according to the known procedures. ${ }^{2}$ 2-borono-4(trifluoromethyl)benzoic acid ($\mathbf{C F}_{3}-\mathbf{C O O H}-\mathbf{B A}$) used in this work are known compounds, prepared according to the literature procedures. ${ }^{3} \mathrm{Mg}(\mathrm{TMP})_{2}{ }^{4}$ and 2,2-dihydroxy-1-arylethan-1-one ${ }^{5}$ were both prepared according to the literature.

2 Experimental Section and HPLC Charts for chiral compounds 4 and 5

2.1 Typical procedure I: preparation of racemic Cis-CF 2 -aziridine 4

To a 25 mL Schlenk tube equipped with a reflux condenser and an argon balloon at the top of the condenser through a rubber septum was added 2,2-dihydroxy-1-arylethan-1one $\mathbf{1}(0.3 \mathrm{mmol}, 1$ equiv.), 4 -methoxyaniline $\mathbf{2 a}(40.6 \mathrm{mg}, 0.33 \mathrm{mmol})$, triphenyl borate $\mathrm{B}(\mathrm{OPh})_{3}(8.7 \mathrm{mg}, 0.03 \mathrm{mmol})$, anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}(200 \mathrm{mg})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ at room temperature under argon atmosphere. After reaction for 30 minutes at room temperature, the ((2-diazo-1,1-difluoroethyl)sulfonyl)benzene Ps-DFA 3 ($104.5 \mathrm{mg}, 77.4 \mathrm{uL}, 0.45$ mmol) was added with Micro syringe and racemic 1,1'-bi-2-naphthol (BINOL, 8.6 mg , $0.03 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was added dropwise. The reaction was allowed to stir for 24 hours at $45^{\circ} \mathrm{C}$ under argon atmosphere until the consumption of substrates was completed (monitored by TLC). The reaction mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ three times. The combined organic layer was washed with water and brine, and then dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated under vacuum. The residue was purified by neutral alumina column chromatography (eluting with dichloromethane/petroleum ether) to give racemic Cis- CF_{2}-aziridine 4.

2.2 Typical procedure II: preparation of chiral Cis-CF 2 -aziridine 4

To a 25 mL Schlenk tube equipped with a stirring bar was added 2,2-dihydroxy-1-arylethan-1-one $\mathbf{1}$ ($0.3 \mathrm{mmol}, 1$ equiv.), 4-methoxyaniline $\mathbf{2 a}$ ($40.6 \mathrm{mg}, 0.33 \mathrm{mmol}$), 2boronobenzoic acid COOH-BA ($3.98 \mathrm{mg}, 0.024 \mathrm{mmol}$), anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}(200 \mathrm{mg})$ and toluene $(1 \mathrm{~mL})$ at room temperature under argon atmosphere. After reaction for 30 minutes at room temperature, the ((2-diazo-1,1-difluoroethyl)sulfonyl)benzene Ps-DFA 3 ($104.5 \mathrm{mg}, 77.4 \mathrm{uL}, 0.45 \mathrm{mmol}$) was added with Micro syringe and CDSI-4 (12.3 mg , $0.015 \mathrm{mmol})$ in toluene (1 mL) was added dropwise. The reaction was allowed to stir for 24 hours at room temperature under argon atmosphere until the consumption of substrates was completed (monitored by TLC). The reaction mixture was quenched with saturated aq. NaHCO_{3} and extracted with Ethyl Acetate three times. The combined organic layer was washed with water and brine, and then dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated under vacuum. The residue was purified by neutral alumina column chromatography (eluting with dichloromethane/petroleum ether) to give Cis-CF_{2}-aziridine 4. Enantiomeric excess was determined by chiral HPLC analysis.

The Cis-CF CF_{2}-aziridine 4a was obtained as white solid after neutral alumina column chromatography (petroleum ether/dichloromethane $=2 / 1$), $85 \mathrm{mg}, 64 \%$ yield, 73% ee; M.p. $175.8-176.7^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.3$ (dichloromethane/ petroleum ether $=$ $3 / 1$); The $\mathbf{4 a}$ with 73% ee (85 mg) was dissolved in an appropriate amount of isopropanol ($0.15 \mathrm{~mL} / \mathrm{mg}$) with ultrasound for 3 minutes, followed by filtration, and the obtained solution was concentrated to give $\mathbf{4 a}$ with more than 99% ee; Repeating the above operation until the obtained solution was below 99% ee analyzed by HPLC; The obtained solution was combined and concentrated to give $\mathbf{4 a}(40 \%$ yield, $>99 \%$ ee $)$. ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.20-8.05(\mathrm{~m}, 2 \mathrm{H}), 7.93(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.71(\mathrm{t}, J$ $=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{dt}, J=15.6,7.6 \mathrm{~Hz}, 3 \mathrm{H}), 7.46(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.25-7.17(\mathrm{~m}$, $2 \mathrm{H}), 6.90-6.81(\mathrm{~m}, 2 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.67(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{dt}, J=16.0,6.1$ $\mathrm{Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 190.6,156.7,143.8,135.8,135.5,134.1,132.0$, $130.9,129.5,129.0,128.8,121.2,120.3\left(\mathrm{dd}, J_{\mathrm{C}-\mathrm{F}}=291.5,283.7 \mathrm{~Hz}\right), 114.7,55.6,45.5$, $42.2\left(\mathrm{dd}, J_{\mathrm{C}-\mathrm{F}}=30.2,20.5 \mathrm{~Hz}\right) .{ }^{19} \mathbf{F}$ NMR $\left(377 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-102.81(\mathrm{dd}, J=237.2$, 5.7 Hz), $-106.31\left(\mathrm{dd}, J=237.2,16.0 \mathrm{~Hz}\right.$). HRMS (ESI) m/z calcd for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{NO}_{4} \mathrm{~F}_{2} \mathrm{~S}$ $[\mathrm{M}+\mathrm{H}]^{+}: 444.1081$, found: 444.1081; $[\alpha]_{\mathrm{D}}{ }^{20}=67.2\left(\right.$ c $\left.1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right),>99 \%$ ee; HPLC (column, Daicel Chirapak IC, $\mathrm{n}-\mathrm{Hexane} / \mathrm{i}-\mathrm{PrOH}=70 / 30$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, 20^{\circ} \mathrm{C}$ detection UV 254 nm) t_{R} of major isomer 38.1 min , t_{R} of minor isomer 26.3 min .

Peak $\#$	Ret.Time (min)	Area $\mathrm{mAU}{ }^{*} \mathrm{~S}$	Height (mAU)	Width (min)	Symmetry Factor	Area $(\%)$
1	26.479	1173.6	21.1	0.8439	0.762	49.265
2	39.296	1208.6	13.8	1.1724	0.808	50.735

Peak $\#$	Ret.Time (min)	Area mAU *S	Height (mAU)	Width (min)	Symmetry Factor	Area $(\%)$
1	26.263	85.3	1.5	0.6986	0.868	0.178
2	38.134	47676	561.9	1.2956	0.52	99.822

((2R,3S)-3-(difluoro(phenylsulfonyl)methyl)-1-(4-methoxyphenyl)aziridin-2-yl)(p-tolyl)methanone (4b)

The Cis-CF ${ }_{2}$-aziridine $\mathbf{4 b}$ was obtained as white solid after neutral alumina column chromatography (petroleum ether/dichloromethane $=2 / 1$), $90 \mathrm{mg}, 66 \%$ yield, 66% ee; M.p. 154.3-154.9 ${ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.2$ (dichloromethane/ petroleum ether $=3 / 1$); The $\mathbf{4 b}$ with 66% ee (90 mg) was dissolved in an appropriate amount of isopropanol ($0.1 \mathrm{~mL} / \mathrm{mg}$) with ultrasound for 3 minutes, followed by filtration, and the obtained solution was concentrated to give $\mathbf{4 b}$ with more than 99% ee; Repeating the above operation until the obtained solution was below 99% ee analyzed by HPLC; The obtained solution was combined and concentrated to give $\mathbf{4 b}$ (46% yield, $>99 \%$ ee).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.04(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.95(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.73$ $(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.30-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.24(\mathrm{t}, J=6.1 \mathrm{~Hz}$, $2 \mathrm{H}), 6.87$ (d, $J=8.9 \mathrm{~Hz}, 2 \mathrm{H}$), 3.79 (s, 3H), 3.67 (d, $J=6.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.57 (dt, $J=16.2$, $6.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 190.1,156.7,145.1,143.9$, $135.8,133.0,132.0,130.9,129.4,129.1,121.2,120.3$ (dd, $J_{\mathrm{C}-\mathrm{F}}=291.6,283.7 \mathrm{~Hz}$), 114.7, $55.6,45.5,42.1\left(\mathrm{dd}, J_{\mathrm{C}-\mathrm{F}}=30.3,20.4 \mathrm{~Hz}\right), 21.8 .{ }^{19} \mathbf{F}$ NMR ($377 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $-102.84(\mathrm{dd}, J=237.2,4.2 \mathrm{~Hz}$), $-106.52(\mathrm{dd}, J=237.1,16.2 \mathrm{~Hz}$). HRMS (ESI) m/z calcd for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{NO}_{4} \mathrm{~F}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 458.1238$, found: 458.1237; $[\alpha]_{\mathrm{D}}{ }^{20}=91.4$ (c 1.0, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$), $>99 \%$ ee; HPLC (column, Daicel Chirapak IC, $n-H e x a n e / i-\mathrm{PrOH}=70 / 30$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, 20^{\circ} \mathrm{C}$ detection UV 254 nm) t_{R} of major isomer $48.8 \mathrm{~min}, t_{\mathrm{R}}$ of minor isomer 30.2 min .

Peak $\#$	Ret.Time (min)	Area mAU *S	Height (mAU)	Width (min)	Symmetry Factor	Area $(\%)$
1	31.334	9801.6	143.4	1.048	0.715	50.756
2	50.232	9509.5	85.1	1.659	0.701	49.244

((2R,3S)-3-(difluoro(phenylsulfonyl)methyl)-1-(4-methoxyphenyl)aziridin-2-yl)(m-tolyl)methanone (4c)

The Cis-CF CF_{2}-aziridine $\mathbf{4 c}$ was obtained as white solid after neutral alumina column chromatography (petroleum ether/dichloromethane $=2 / 1$), $94 \mathrm{mg}, 70 \%$ yield, 69% ee; M.p. $157.0-158.0^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.3$ (dichloromethane/ petroleum ether $=3 / 1$); The $\mathbf{4 c}$ with 69% ee (94 mg) was dissolved in an appropriate amount of isopropanol ($0.15 \mathrm{~mL} / \mathrm{mg}$) with ultrasound for 3 minutes, followed by filtration, and the obtained solid with increased ee; Repeating the above operation until the obtained solid was more than 99% ee analyzed by HPLC; The obtained solid $\mathbf{4 c}$ (35% yield, $>99 \%$ ee).
${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.92(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 4 \mathrm{H}), 7.69(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.53$ (t, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=8.8$ $\mathrm{Hz}, 2 \mathrm{H}), 6.84(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.68(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.56(\mathrm{dt}, J=$ $16.3,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 190.5,156.5,143.8$, $138.5,135.7,135.3,134.7,131.8,130.7,129.3,129.1,128.5,126.0,121.0,120.2$ (dd, $\left.J_{\mathrm{C}-\mathrm{F}}=291.6,283.4 \mathrm{~Hz}\right), 114.5,55.4,45.4,42.0\left(\mathrm{dd}, J_{\mathrm{C}-\mathrm{F}}=30.4,20.2 \mathrm{~Hz}\right), 21.2{ }^{19}{ }^{19}$ NMR ($377 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-102.66(\mathrm{dt}, J=237.2,6.0 \mathrm{~Hz}$), $-106.51(\mathrm{dt}, J=237.2,15.9$ Hz). HRMS (ESI) m/z calcd for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{NO}_{4} \mathrm{~F}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 458.1238$, found: 458.1237; $[\alpha]_{\mathrm{D}}{ }^{20}=80.8\left(\mathrm{c} 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$), 99% ee; HPLC (column, Daicel Chirapak IC, n -Hexane/i-PrOH $=70 / 30$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, 20^{\circ} \mathrm{C}$ detection UV 254 nm) t_{R} of major isomer $40.4 \mathrm{~min}, t_{\mathrm{R}}$ of minor isomer 27.1 min .

Peak $\#$	Ret.Time (min)	Area $\mathrm{mAU}{ }^{*} \mathrm{~S}$	Height (mAU)	Width (min)	Symmetry Factor	Area $(\%)$
1	26.584	50779.4	902.6	0.866	0.647	49.595
2	39.764	51609.3	560.9	1.4171	0.546	50.405

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	Ret.Time (min)	$\begin{gathered} \text { Area } \\ \text { mAU *S } \end{gathered}$	$\begin{aligned} & \text { Height } \\ & (\mathrm{mAU}) \end{aligned}$	Width (min)	Symmetry Factor	Area (\%)
1	27.089	136.4	2.2	0.752	0.886	0.551
2	40.401	24617.7	251.7	1.4701	0.565	99.449

((2R,3S)-3-(difluoro(phenylsulfonyl)methyl)-1-(4-methoxyphenyl)aziridin-2-yl)(4-ethylphenyl)methanone (4d)

The Cis- CF_{2}-aziridine $\mathbf{4 d}$ was obtained as white solid after neutral alumina column chromatography (petroleum ether/dichloromethane $=2 / 1$), $75 \mathrm{mg}, 53 \%$ yield, 65% ee; M.p. $160.8-161.6{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.25$ (dichloromethane/ petroleum ether $=3 / 1$); The $\mathbf{4 d}$ with 65% ee (75 mg) was dissolved in an appropriate amount of isopropanol ($0.05 \mathrm{~mL} / \mathrm{mg}$) with ultrasound for 3 minutes, followed by filtration, and the obtained solution was concentrated to give $\mathbf{4 d}$ with more than 99% ee; Repeating the above operation until the obtained solution was below 99% ee analyzed by HPLC; The obtained solution was combined and concentrated to give $\mathbf{4 d}$ (32% yield, $>99 \%$ ee).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.05(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.94(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.71$ $(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.25-7.17(\mathrm{~m}$, 2H), $6.91-6.80(\mathrm{~m}, 2 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.65(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.61-3.51(\mathrm{~m}, 1 \mathrm{H})$, $2.69(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.24(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 190.1$, $156.7,151.2,144.0,135.8,133.3,132.1,131.0,129.5,129.2,128.3,121.2,120.3$ (dd, $\left.J_{\mathrm{C}-\mathrm{F}}=291.6,283.6 \mathrm{~Hz}\right), 114.7,55.7,45.5,42.1\left(\mathrm{dd}, J_{\mathrm{C}-\mathrm{F}}=30.4,20.2 \mathrm{~Hz}\right)$, 29.1, 15.1. ${ }^{19}$ F NMR ($377 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-102.71(\mathrm{dd}, J=237.2,5.1 \mathrm{~Hz}),-106.61(\mathrm{dd}, J=237.2$, 16.3 Hz). HRMS (ESI) m / z calcd for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{NO}_{4} \mathrm{~F}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 472.1394$, found: 472.1395; $[\alpha]_{D}{ }^{20}=76.8$ (c 1.0, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$), 99% ee; HPLC (column, Daicel Chirapak IC, n -Hexane $/ \mathrm{i}-\mathrm{PrOH}=70 / 30$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, 20^{\circ} \mathrm{C}$ detection UV 254 nm) t_{R} of major isomer $44.0 \mathrm{~min}, t_{\mathrm{R}}$ of minor isomer 30.1 min .

Peak $\#$	Ret.Time (min)	Area mAU *S	Height (mAU)	Width (min)	Symmetry Factor	Area $(\%)$
1	30.116	8571.6	131.4	1	0.74	51.615
2	45.543	8035.2	79.3	1.5426	0.727	48.385

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	Ret.Time (min)	$\begin{gathered} \text { Area } \\ \text { mAU "S } \end{gathered}$	$\begin{aligned} & \text { Height } \\ & (\mathrm{mAU}) \end{aligned}$	Width (min)	Symmetry Factor	Area (\%)
1	30.102	908.9	10.8	1.2291	1.282	0.434
2	43.998	208671.1	1725.6	1.7894	0.374	99.566

((2R,3S)-3-(difluoro(phenylsulfonyl)methyl)-1-(4-methoxyphenyl)aziridin-2-yl)(4-fluorophenyl)methanone (4e)

The Cis-CF ${ }_{2}$-aziridine $\mathbf{4 e}$ was obtained as white solid after neutral alumina column chromatography (petroleum ether/dichloromethane $=2 / 1$), $61 \mathrm{mg}, 44 \%$ yield, 48% ee; M.p. $150.1-150.8{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.4$ (dichloromethane/ petroleum ether $=3 / 1$); The $4 \mathbf{e}$ with 48% ee (61 mg) was dissolved in an appropriate amount of isopropanol ($0.05 \mathrm{~mL} / \mathrm{mg}$) with ultrasound for 3 minutes, followed by filtration, and the obtained solution was concentrated to give $\mathbf{4 e}$ with more than 90% ee; Repeating the above operation until the obtained solution was below 90% ee analyzed by HPLC; The obtained solution was combined and concentrated to give $\mathbf{4 e}$ (27% yield, 95% ee determined by HPLC).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.23-8.12(\mathrm{~m}, 2 \mathrm{H}), 7.94(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.74(\mathrm{t}, J$ $=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.23-7.18(\mathrm{~m}, 2 \mathrm{H}), 7.17-7.10(\mathrm{~m}, 2 \mathrm{H}), 6.90$
$-6.81(\mathrm{~m}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.62(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{dt}, J=15.3,6.4 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 189.3,166.3\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=254.9 \mathrm{~Hz}\right), 156.9,143.7,135.9$, $132.1,132.0,131.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=9.5 \mathrm{~Hz}\right), 131.0,129.5,121.2,120.3\left(\mathrm{dd}, J_{\mathrm{C}-\mathrm{F}}=291.1\right.$, $284.0 \mathrm{~Hz}), 116.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=21.9 \mathrm{~Hz}\right), 114.9,55.7,45.4,42.2\left(\mathrm{dd}, J_{\mathrm{C}-\mathrm{F}}=29.7,20.8 \mathrm{~Hz}\right)$. ${ }^{19}$ F NMR ($377 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-103.21(\mathrm{tt}, J=8.4,5.4 \mathrm{~Hz}$), $-103.35(\mathrm{dd}, J=237.4,6.2$ Hz), -106.00 (dd, $J=237.4,15.3 \mathrm{~Hz}$). HRMS (ESI) m/z calcd for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{NO}_{4} \mathrm{~F}_{3} \mathrm{~S}$ $[\mathrm{M}+\mathrm{H}]^{+}: 462.0987$, found: 462.0980; $[\alpha]_{\mathrm{D}}{ }^{20}=61.6$ (c 1.0, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$), 95% ee; HPLC (column, Daicel Chirapak IC, $n-H e x a n e / i-\mathrm{PrOH}=70 / 30$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, 20^{\circ} \mathrm{C}$ detection UV 254 nm) t_{R} of major isomer 31.2 min , t_{R} of minor isomer 22.4 min .

Peak $\#$	Ret.Time (min)	Area mAU *S	Height (mAU)	Width (min)	Symmetry Factor	Area $(\%)$
1	22.273	12384.4	274.8	0.6946	0.723	49.578
2	31.774	12595.5	180.2	1.0574	0.645	50.422

Peak $\#$	Ret.Time (min)	Area mAU *S	Height (mAU)	Width (min)	Symmetry Factor	Area $(\%)$
1	22.423	2067.3	44.6	0.7123	0.834	2.667
2	31.165	75454.7	1022.4	1.1056	0.449	97.333

(4-chlorophenyl)((2R,3S)-3-(difluoro(phenylsulfonyl)methyl)-1-(4-methoxyphenyl)aziridin-2-yl)methanone (4f)

The Cis-CF ${ }_{2}$-aziridine $\mathbf{4 f}$ was obtained as white solid after neutral alumina column chromatography (petroleum ether/dichloromethane $=2 / 1$), $59 \mathrm{mg}, 41 \%$ yield, 49% ee; M.p. 134.9-135.8 ${ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.4$ (dichloromethane/ petroleum ether $=3 / 1$); The $\mathbf{4 f}$ with 49% ee (59 mg) was dissolved in an appropriate amount of
isopropanol ($0.05 \mathrm{~mL} / \mathrm{mg}$) with ultrasound for 3 minutes, followed by filtration, and the obtained solution was concentrated to give $\mathbf{4 f}$ with more than 90% ee; Repeating the above operation until the obtained solution was below 90% ee analyzed by HPLC; The obtained solution was combined and concentrated to give $\mathbf{4 f}$ (26% yield, 97% ee determined by HPLC).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.08(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.94(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.74$ $(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.44(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{~d}, J=8.9$ $\mathrm{Hz}, 2 \mathrm{H}), 6.87(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.61(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{dt}, J=$ $15.0,6.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 189.8,156.9,143.6,140.7,136.0$, $133.9,132.0,131.0,130.5,129.6,129.2,121.2,120.3$ (dd, $J_{\mathrm{C}-\mathrm{F}}=291.1,284.2 \mathrm{~Hz}$), 114.9, 55.7, 45.4, 42.3 (dd, $J_{\text {C-F }}=29.6,20.9 \mathrm{~Hz}$). ${ }^{19} \mathbf{F}$ NMR ($377 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 103.35 (dd, $J=237.4,6.3 \mathrm{~Hz}$), $-105.87(\mathrm{dd}, J=237.4,15.1 \mathrm{~Hz}$). HRMS (ESI) m/z calcd for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{NO}_{4} \mathrm{~F}_{2} \mathrm{SCl}[\mathrm{M}+\mathrm{H}]^{+}$: 478.0691, found: 478.0693; [$\left.\alpha\right]_{\mathrm{D}}{ }^{20}=58.4$ (c 1.0, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$), 97% ee; HPLC (column, Daicel Chirapak IC, $n-H e x a n e / i-\mathrm{PrOH}=70 / 30$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, 20^{\circ} \mathrm{C}$ detection UV 254 nm) t_{R} of major isomer $29.9 \mathrm{~min}, t_{\mathrm{R}}$ of minor isomer 22.7 min .

Peak $\#$	Ret.Time (min)	Area mAU *S	Height (mAU)	Width (min)	Symmetry Factor	Area $(\%)$
1	22.552	3533.5	74.3	0.7295	0.751	49.357
2	30.857	3625.6	53.7	1.0384	0.752	50.643

Peak $\#$	Ret.Time (min)	Area mAU *S	Height (mAU)	Width (min)	Symmetry Factor	Area $(\%)$
1	22.679	2417.5	43.1	0.8233	0.769	1.324
2	29.886	180194.8	2357.7	1.1538	0.377	98.676

The $C i s$ - CF_{2}-aziridine $\mathbf{4 g}$ was obtained as white solid after neutral alumina column chromatography (petroleum ether/dichloromethane $=2 / 1$), $60 \mathrm{mg}, 38 \%$ yield, 35% ee; M.p. 146.1-146.9 ${ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.4$ (dichloromethane/ petroleum ether $=3 / 1$); The $\mathbf{4 g}$ with 35% ee (60 mg) was dissolved in an appropriate amount of isopropanol $(0.2 \mathrm{~mL} / \mathrm{mg})$ with ultrasound for 3 minutes, followed by filtration, and the obtained solution was concentrated to give $\mathbf{4 g}$ with more than 90% ee; Repeating the above operation until the obtained solution was below 90% ee analyzed by HPLC; The obtained solution was combined and concentrated to give $\mathbf{4 g}(20 \%$ yield, 95% ee determined by HPLC).
${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.00(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.94(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.74$ $(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{dd}, J=17.1,8.3 \mathrm{~Hz}, 4 \mathrm{H}), 7.23-7.15(\mathrm{~m}, 2 \mathrm{H}), 6.87(\mathrm{t}, J=6.0$ $\mathrm{Hz}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.61(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{dt}, J=15.1,6.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 190.0,156.9,143.6,135.9,134.3,132.2,132.0,131.0$, $130.5,129.6,129.5,121.2,120.3\left(\mathrm{dd}, J_{\mathrm{C}-\mathrm{F}}=291.1,284.2 \mathrm{~Hz}\right), 114.9,55.7,45.4,42.3$ $\left(\mathrm{dd}, J_{\mathrm{C}-\mathrm{F}}=29.7,21.0 \mathrm{~Hz}\right) .{ }^{19} \mathbf{F}$ NMR $\left(377 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-103.34(\mathrm{dd}, J=237.4,6.3$ Hz), $-105.84\left(\mathrm{dd}, J=237.4,15.0 \mathrm{~Hz}\right.$). HRMS (ESI) m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{NO}_{4} \mathrm{~F}_{2} \mathrm{SBr}$ $[\mathrm{M}+\mathrm{H}]^{+}: 522.0186$, found: $522.0184 ;[\alpha]_{\mathrm{D}}{ }^{20}=53.8\left(\mathrm{c} 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right), 95 \%$ ee; HPLC (column, Daicel Chirapak IC, n-Hexane/i-PrOH $=70 / 30$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, 20^{\circ} \mathrm{C}$ detection UV 254 nm) t_{R} of major isomer $33.2 \mathrm{~min}, t_{\mathrm{R}}$ of minor isomer 24.8 min .
$\left.\begin{array}{|c|c|c|c|c|c|c|}\hline \begin{array}{c}\text { Peak } \\ \#\end{array} & \begin{array}{c}\text { Ret.Time } \\ (\mathrm{min})\end{array} & \begin{array}{c}\text { Area } \\ \mathrm{mAU}\end{array}{ }^{*} \mathrm{~S}\end{array} \begin{array}{c}\text { Height } \\ (\mathrm{mAU})\end{array} \begin{array}{c}\text { Width } \\ (\mathrm{min})\end{array} \begin{array}{c}\text { Symmetry } \\ \text { Factor }\end{array} \quad \begin{array}{c}\text { Area } \\ (\%)\end{array}\right]$

Peak $\#$	Ret.Time (min)	Area $\mathrm{mAU}{ }^{*} \mathrm{~S}$	Height (mAU)	Width (min)	Symmetry Factor	Area $(\%)$
1	24.801	1515.9	25.5	0.892	0.756	2.577
2	33.247	57306.3	744.6	1.157	0.574	97.423

((2R,3S)-3-(difluoro(phenylsulfonyl)methyl)-1-(4-methoxyphenyl)aziridin-2-yl)(naphthalen-2-yl)methanone (4h)

The Cis-CF 2 -aziridine $\mathbf{4 h}$ was obtained as white solid after neutral alumina column chromatography (petroleum ether/dichloromethane $=2 / 1$), $70 \mathrm{mg}, 47 \%$ yield, 50% ee; M.p. $163.6-164.5^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.2$ (dichloromethane/ petroleum ether $=3 / 1$); The $\mathbf{4 h}$ with 50% ee (70 mg) was dissolved in an appropriate amount of isopropanol ($0.2 \mathrm{~mL} / \mathrm{mg}$) with ultrasound for 3 minutes, followed by filtration, and the obtained solution was concentrated to give $\mathbf{4 h}$ with 99% ee; Repeating the above operation until the obtained solution was below 99% ee analyzed by HPLC; The obtained solution was combined and concentrated to give $\mathbf{4 h}$ (22% yield, 99% ee).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.71(\mathrm{~s}, 1 \mathrm{H}), 8.12(\mathrm{dd}, J=8.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.99-7.82$ $(\mathrm{m}, 5 \mathrm{H}), 7.67(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.48(\mathrm{~m}, 3 \mathrm{H}), 7.31-$ $7.21(\mathrm{~m}, 2 \mathrm{H}), 6.88(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.83-3.76(\mathrm{~m}, 4 \mathrm{H}), 3.65(\mathrm{dt}, J=15.8,6.3 \mathrm{~Hz}$, $1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 190.5,156.8,143.9,136.1,135.8,132.8,132.5$, $132.0,131.3,130.9,130.0,129.5,129.1,128.7,127.9,127.1,124.1,121.3,120.4$ (dd, $\left.J_{\mathrm{C}-\mathrm{F}}=291.5,283.9 \mathrm{~Hz}\right), 114.8,55.7,45.7,42.3\left(\mathrm{dd}, J_{\mathrm{C}-\mathrm{F}}=30.0,20.5 \mathrm{~Hz}\right) .{ }^{19} \mathbf{F} \mathbf{N M R}$ ($377 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-102.28--103.67(\mathrm{~m}),-106.15$ (ddd, $J=237.3,15.8,2.9 \mathrm{~Hz}$). HRMS (ESI) m/z calcd for $\mathrm{C}_{27} \mathrm{H}_{22} \mathrm{NO}_{4} \mathrm{~F}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 494.1238$, found: 494.1235; [$\left.\alpha\right]_{\mathrm{D}}{ }^{20}$ $=107.4$ (c 1.0, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$), 99\% ee; HPLC (column, Daicel Chirapak IC, n-Hexane/i$\operatorname{PrOH}=70 / 30$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, 20^{\circ} \mathrm{C}$ detection UV 254 nm$) t_{\mathrm{R}}$ of major isomer $48.4 \mathrm{~min}, t_{\mathrm{R}}$ of minor isomer 32.4 min .

Peak $\#$	Ret.Time (min)	Area $\mathrm{mAU}{ }^{*} \mathrm{~S}$	Height (mAU)	Width (min)	Symmetry Factor	Area $(\%)$
1	31.844	107260.8	1285.3	1.2532	0.932	51.877
2	48.007	99500.1	830.4	1.8288	0.582	48.123

2.3 Preparation of compound $5 \mathbf{a}^{6}$

To solution of $\mathbf{4 a}(44.3 \mathrm{mg}, 0.1 \mathrm{mmol},>99.5 \%$ ee $)$ in $\mathrm{CH}_{3} \mathrm{CN}(2 \mathrm{~mL})$ at Schlenk tube $(25 \mathrm{~mL})$ under argon atmosphere was placed in ice water bath and added $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Ce}\left(\mathrm{NO}_{3}\right)_{6}(185 \mathrm{mg}, 0.3 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(1.4 \mathrm{~mL})$ dropwise. After stirred at the temperature for 45 minutes, the reaction mixture was quenched with saturated aq. $\mathrm{Na}_{2} \mathrm{SO}_{3}$, and extracted three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layer was washed with water and brine, and then dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated under vacuum. The obtained solid was purified by silica gel column chromatography (eluting with petroleum ether/ethyl acetate) to give ($(2 R, 3 S)$-3-(difluoro(phenylsulfonyl)methyl)aziridin-2-yl)(phenyl)methanone 5a as white solid with 81% yield, $>99.9 \%$ ee. M.p. $165.8-166.4{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.2$ (petroleum ether/ethyl acetate $=5 / 1$).

((2R,3S)-3-(difluoro(phenylsulfonyl)methyl)aziridin-2-yl)(phenyl)methanone (5a)

${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.07(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.91(\mathrm{~d}, J$ $=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.73(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{tt}, J=23.4,7.4 \mathrm{~Hz}$, $5 \mathrm{H}), 3.64(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.33(\mathrm{~s}, 1 \mathrm{H}), 2.37(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 191.3,135.9,135.5,134.2,131.9,131.0$, $129.5,128.9,128.9,120.8\left(\mathrm{t}, J_{\mathrm{C}-\mathrm{F}}=289.0 \mathrm{~Hz}\right), 39.0,36.7\left(\mathrm{t}, J_{\mathrm{C}-\mathrm{F}}=25.2 \mathrm{~Hz}\right) .{ }^{19} \mathbf{F}$ NMR ($377 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-103.42$ (dd, $J=235.3,11.9 \mathrm{~Hz}$), $-104.66(\mathrm{~d}, J=234.5 \mathrm{~Hz})$. HRMS (ESI) m/z calcd for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{NO}_{3} \mathrm{~F}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 338.0662$, found: $338.0670 ;[\alpha]_{\mathrm{D}}{ }^{20}$ $=116.4$ (c 1.0, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$), >99.9\% ee; HPLC (column, Daicel Chirapak IC, n-Hexane/i-
$\operatorname{PrOH}=70 / 30$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, 20^{\circ} \mathrm{C}$ detection UV 254 nm$) t_{\mathrm{R}}$ of major isomer $20.5 \mathrm{~min}, t_{\mathrm{R}}$ of minor isomer 36.3 min .

Peak $\#$	Ret.Time (min)	Area mAU *S	Height (mAU)	Width (min)	Symmetry Factor	Area $(\%)$
1	20.699	3870.3	99.8	0.5922	0.748	50.352
2	36.404	3816.2	57.8	1.0235	0.818	49.648

Peak $\#$	Ret.Time (min)	Area mAU *S	Height (mAU)	Width (min)	Symmetry Factor	Area $(\%)$
1	20.516	7726.7	201.6	0.5899	0.708	99.959
2	36.303	3.2	$3.1 \mathrm{E}-1$	0.1296	0	0.041

2.4 Preparation of compound $\mathbf{5 b}{ }^{\mathbf{7}}$

To solution of $\mathbf{4 a}(44.3 \mathrm{mg}, 0.1 \mathrm{mmol},>99.5 \% \mathrm{ee})$ in EtOH (2 mL) at round-bottom flask (10 mL) was cooled $0^{\circ} \mathrm{C}$ and added $\mathrm{NaBH}_{4}(6 \mathrm{mg}, 0.15 \mathrm{mmol})$ in small amounts. After being stirred at the temperature for 12 h , the reaction mixture was quenched by addition of $\mathrm{H}_{2} \mathrm{O}$ and acidified with 4 M aq. HCl , and extracted three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layer was washed with water and brine, and then dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated under vacuum. The residue was purified by silica gel column chromatography (eluting with petroleum ether/ethyl acetate) to give ((2R,3S)-3-(difluoro(phenylsulfonyl)methyl)aziridin-2-yl)(phenyl)methanone 5b as
white solid with 95% yield, $>99.5 \%$ ee. M.p. $39.0-40.0{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.6$ (petroleum ether/ethyl acetate $=5 / 1$).
(S)-((2R,3S)-3-(difluoro(phenylsulfonyl)methyl)-1-(4-methoxyphenyl)aziridin-2yl)(phenyl)methanol (5b)

${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.10(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.84(\mathrm{t}, J$ $=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.61(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H})$, $7.45(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.42-7.36(\mathrm{~m}, 1 \mathrm{H}), 6.65-6.57(\mathrm{~m}, 2 \mathrm{H})$, $6.39(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.83(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.73-3.61(\mathrm{~m}$, $4 \mathrm{H}), 3.02(\mathrm{dt}, J=18.8,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.73-2.66(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.1,144.7,141.5,136.2,131.5,131.1,129.8,128.8,128.3,126.4,122.0\left(\mathrm{t}, J_{\mathrm{C}-\mathrm{F}}=\right.$ $287.6 \mathrm{~Hz}), 120.4,114.4,71.5(\mathrm{~d}, J=5.8 \mathrm{~Hz}), 55.5,51.4,40.6\left(\mathrm{dd}, J_{\mathrm{C}-\mathrm{F}}=25.5,19.2 \mathrm{~Hz}\right)$. ${ }^{19}$ F NMR ($377 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-95.94(\mathrm{dd}, J=236.0,4.1 \mathrm{~Hz}$), $-108.40(\mathrm{dd}, J=236.0$, 18.9 Hz). HRMS (ESI) m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{NO}_{4} \mathrm{~F}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: 446.1238 , found: 446.1233; $[\alpha]_{\mathrm{D}}{ }^{20}=-83.0$ (c 1.0, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$), >99\% ee; HPLC (column, Daicel Chirapak IC, $n-$ Hexane $/ \mathrm{i}-\mathrm{PrOH}=80 / 20$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, 20^{\circ} \mathrm{C}$ detection UV 254 nm$) t_{\mathrm{R}}$ of major isomer $11.4 \mathrm{~min}, t_{\mathrm{R}}$ of minor isomer 8.5 min .

Peak $\#$	Ret.Time (min)	Area $\mathrm{mAU}{ }^{*} \mathrm{~S}$	Height (mAU)	Width (min)	Symmetry Factor	Area $(\%)$
1	8.46	2994	173.8	0.2651	0.833	49.926
2	11.455	3003	139.9	0.3291	0.777	50.074

Peak $\#$	Ret.Time (min)	Area mAU *S	Height (mAU)	Width (min)	Symmetry Factor	Area $(\%)$
1	8.48	5.3	$2.8 \mathrm{E}-1$	0.2694	0.926	0.148
2	11.441	3542.3	164.5	0.3328	0.769	99.852

2.5 Preparation of compound $\mathbf{5 c}^{8}$

The Cis-CF 2 -aziridine $\mathbf{4 a}(44.3 \mathrm{mg}, 0.1 \mathrm{mmol},>99.5 \%$ ee) was dissolved in acetone (4 mL) at two-mouth round-bottom flask. To this solution was added 6 N aq. $\mathrm{HCl}(2 \mathrm{~mL})$ dropwise at room temperature. The flask was then equipped with an air condenser and an argon balloon at the top of the condenser through a rubber septum. The solution was stirred at $40^{\circ} \mathrm{C}$ for 6 hours until the consumption of $4 \mathbf{a}$ was completed (monitored by TLC). The solution was then cooled to room temperature and quenched with saturated aq. NaHCO_{3} until no bubbles generated, and extracted three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layer was washed with water and brine, and then dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated under vacuum. The obtained solid was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$, and performed two-phase recrystallization with 45 mL of petroleum ether at room temperature. The (2S,3R)-2-chloro-4,4-difluoro-3-((4-methoxyphenyl)amino)-1-phenyl-4-(phenylsulfonyl)butan-1-one $\mathbf{5 c}$ was collected as white solid with 89% yield, $>99.9 \%$ ee. M.p. $140.3-141.2{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.4$ (petroleum ether/ethyl acetate $=5 / 1$).

(2S,3R)-2-chloro-4,4-difluoro-3-((4-methoxyphenyl)amino)-1-phenyl-4-(phenylsulfonyl)butan-1-one (5c)

(ddt, $J=21.3,10.8,5.2 \mathrm{~Hz}, 1 \mathrm{H}$), $3.66(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13}$ C NMR (101 MHz , DMSO-d ${ }_{6}$) $\delta 191.1$, $152.1,139.9,136.0,134.4,133.5,132.7,130.0,129.7,129.2,128.7,121.6\left(\mathrm{t}, J_{\mathrm{C}-\mathrm{F}}=\right.$ $295.7 \mathrm{~Hz}), 114.9,114.3,58.3,55.2,54.5\left(\mathrm{dd}, J_{\mathrm{C}-\mathrm{F}}=23.6,17.8 \mathrm{~Hz}\right) .{ }^{19} \mathbf{F}$ NMR (377 MHz, DMSO-d ${ }_{6}$) $\delta-101.01(\mathrm{dd}, J=234.2,4.7 \mathrm{~Hz}$), -109.11 (dd, $J=234.1,20.6 \mathrm{~Hz}$). HRMS (ESI) m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{NO}_{4} \mathrm{~F}_{2} \mathrm{SCl}[\mathrm{M}+\mathrm{H}]^{+}$: 480.0848, found: 480.0849; $[\alpha]_{\mathrm{D}}{ }^{20}=-123.6\left(\mathrm{c} 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right),>99 \%$ ee; HPLC (column, Daicel Chirapak IC, n-Hexane/i- $\operatorname{PrOH}=90 / 10$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, 20^{\circ} \mathrm{C}$ detection UV 254 nm) t_{R} of major isomer $20.2 \mathrm{~min}, t_{R}$ of minor isomer 26.2 min .

Peak $\#$	Ret.Time (min)	Area $\mathrm{mAU}{ }^{*} \mathrm{~S}$	Height (mAU)	Width (min)	Symmetry Factor	Area $(\%)$
1	20.221	16447.2	430.7	0.5824	0.718	50.090
2	25.945	16388.2	352.9	0.7135	0.707	49.910

Peak $\#$	Ret.Time (min)	Area mAU *S	Height (mAU)	Width (min)	Symmetry Factor	Area $(\%)$
1	20.229	8066.9	216.7	0.5713	0.739	99.924
2	26.156	6.2	$1.2 \mathrm{E}-1$	0.6309	5.851	0.076

3 Reference

[1] Zeng, J.-L.; Zhang, F.-G.; Ma, J.-A. Org. Lett. 2019, 21, 8244.
[2] He, H.; Le, A. W. M. Eur. J. Org. Chem. 2010, 4181-4184.
[3] Hashimoto, T.; Maruoka, K. J. Am. Chem. Soc. 2013, 135, 17667-17670.
[4] Ooi, T.; Uematsu, Y.; Maruoka, K. J. Org. Chem. 2003, 68, 4576.
[5] Wang, P.; Liao, S.; Tang, Y. J. Am. Chem. Soc. 2013, 135, 16849-16852.
[6] Chai, Z.; Bouillon, J.-P.; Cahard, D. Chem. Commun. 2012, 48, 9471-9473.
[7] Suzuki, T.; Mori, K.; Akiyama, T. Org. Lett. 2009, 11, 2445-2447.
[8] Gupta, A. K.; Mukherjee, M.; Wulff, W. D. Org. Lett. 2011, 13, 5866-5869.

4 NMR spectra of all the new compounds

${ }^{1} \mathrm{H}$ NMR

${ }^{13} \mathrm{C}$ NMR

200	170	140	110	80	60	40	20	0

${ }^{1} \mathrm{H}$ NMR

${ }^{13}$ C NMR

${ }^{1} \mathrm{H}$ NMR

${ }^{13} \mathrm{C}$ NMR

${ }^{1} \mathrm{H}$ NMR

${ }^{13} \mathrm{C}$ NMR

 in
${ }^{19} \mathrm{~F}$ NMR

-106.4
f1 (ppm)

0	-20	-40	-60	-80	-100 $\mathrm{f} 1(\mathrm{ppm})$	-130	-160	-190

${ }^{1} \mathrm{H}$ NMR

${ }^{13} \mathrm{C}$ NMR

| 200 | 170 | 140 | 110 80 60 | 40 | 20 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

${ }^{19} \mathrm{~F}$ NMR

${ }^{1} \mathrm{H}$ NMR

${ }^{13} \mathrm{C}$ NMR

| 200 | 170 | 140 | 110 | 80 | 60 | 40 | 20 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

(10)

${ }^{1} \mathrm{H}$ NMR

$\stackrel{\infty}{\stackrel{\infty}{\otimes}}$

13C NMR

200	170	140	110 $\mathrm{f} 1(\mathrm{ppm})$	80	60	40	20	0

(10)

${ }^{1} \mathrm{H}$ NMR

njmin n in

${ }^{1} \mathrm{H}$ NMR

${ }^{1} \mathrm{H}$ NMR

${ }^{13} \mathrm{C}$ NMR

200	170	140	110 f1 (ppm)	80	60	40	20

(10)

${ }^{1} \mathrm{H}$ NMR

200	170	140	110 f1 (ppm)	80	60	40	20

5 X-Ray Crystallographic Data

5.1 The X-ray crystallographic structures for compound $\mathbf{4 a}$. Crystal data have been deposited to CCDC, number 1983642.

Table 1 Crystal data and structure refinement for Compound 4a

Identification code	22019902 TXF 0m
Empirical formula	$\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{~F}_{2} \mathrm{NO}_{4} \mathrm{~S}$
Formula weight	443.45
Temperature/K	173.0
Crystal system	monoclinic
Space group	P21
a / \AA	8.9940 (4)
b/Å	10.3367 (5)
c/Å	11.4489 (5)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	91.170 (2)
$\gamma /{ }^{\circ}$	90
Volume/ \AA^{3}	1064.16 (8)
Z	2
pcalcg/ cm^{3}	1.384
μ / mm^{-1}	1.773
F (000)	460.0
Crystal size/ mm^{3}	$0.19 \times 0.15 \times 0.12$
Radiatio	$\mathrm{CuK} \alpha(\lambda=1.54184)$
2Θ range for data collection $/{ }^{\circ}$	12.392 to 133.332
Index ranges	$10 \leq \mathrm{h} \leq 10,-12 \leq \mathrm{k} \leq 11,-13 \leq 1 \leq 13$
Reflections collected	8172
Independent reflections	$3473\left[\mathrm{R}_{\text {int }}=0.0278, \mathrm{R}_{\text {sigma }}=0.0417\right]$
Data/restraints/parameters	3473/1/281
Goodness-of-fit on F^{2}	1.117
Final R indexes $[\mathrm{I}>=2 \sigma$ (I)]	$\mathrm{R}_{1}=0.0302, \mathrm{wR}_{2}=0.0771$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0304, \mathrm{wR}_{2}=0.0772$
Largest diff. peak/hole / e \AA^{-3}	0.24/-0.29
Flack parameter	0.064 (8)

5.2 The X-ray crystallographic structures for compound $\mathbf{5 c}$. Crystal data have been deposited to CCDC, number 1983643.

Table 1 Crystal data and structure refinement for Compound 5c

Identification code	DS
Empirical formula	$\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{ClF}_{2} \mathrm{NO}_{4} \mathrm{~S}$
Formula weight	479.91
Temperature/K	170.0
Crystal system	monoclinic
Space group	P21
a/Å	5.5826 (8)
b/Å	16.132 (2)
c/Å	11.8958 (13)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	90.12 (5)
$\gamma /{ }^{\circ}$	90
Volume/ \AA^{3}	1071.3 (2)
Z	2
$\rho \mathrm{calcg} / \mathrm{cm}^{3}$	1.488
μ / mm^{-1}	0.325
F (000)	496.0
Crystal size $/ \mathrm{mm}^{3}$	$0.19 \times 0.12 \times 0.08$
Radiation	$\mathrm{MoK} \alpha(\lambda=0.71073)$
2Θ range for data collection $/{ }^{\circ}$	5.05 to 53.128
Index ranges	$-6 \leq \mathrm{h} \leq 7,-20 \leq \mathrm{k} \leq 19,-14 \leq 1 \leq 14$
Reflections collected	12417
Independent reflections	$4273\left[\mathrm{R}_{\text {int }}=0.0518, \mathrm{R}_{\text {sigma }}=0.0626\right]$
Data/restraints/parameters	4273/1/290
Goodness-of-fit on F^{2}	1.035
Final R indexes [$\mathrm{I}>=2 \sigma$ (I)]	$\mathrm{R}_{1}=0.0434, \mathrm{wR}_{2}=0.0836$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0685, \mathrm{wR}_{2}=0.0982$
Largest diff. peak/hole / e \AA^{-3}	0.25/-0.32
Flack parameter	-0.07 (5)

