Supporting Information (SI)

Asymmetric Synthesis of CF₂-Aziridines Enabled by Combined

Strong Brønsted Acid Catalysis

Xing-Fa Tan, Fa-Guang Zhang*, and Jun-An Ma*

Address: Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, and Tianjin Collaborative Innovation Centre of Chemical Science & Engineering, Tianjin University, Tianjin 300072; and Joint School of NUS & TJU, International Campus of Tianjin University, Fuzhou 350207, P. R. of China

Email: *Fa-Guang Zhang – zhangfg1987@tju.edu.cn

*Jun-An Ma – majun_an68@tju.edu.cn

* Corresponding author

Contents

1 General information	3
2 Experimental Section and HPLC Charts for chiral compounds 4 and 5	4
2.1 Typical procedure I: preparation of racemic <i>Cis</i> -CF ₂ -aziridine 4	4
2.2 Typical procedure II: preparation of chiral Cis-CF ₂ -aziridine 4	4
2.3 Preparation of compound 5a	14
2.4 Preparation of compound 5b	15
2.5 Preparation of compound 5c	17
3 References	18
4 NMR spectra of all the new compounds	19
5 X-Ray Crystallographic Data	36
5.1 The X-ray crystallographic structures for compound 4a. Crystal data	have
been deposited to CCDC, number 1983642	36
5.2 The X-ray crystallographic structures for compound 5c. Crystal data	have
been deposited to CCDC, number 1983643	37

1 General information

¹H, ¹³C and ¹⁹F were recorded on Bruker AV 400 MHz instrument at 400 MHz (¹H NMR), 101MHz (¹³C NMR), as well as 377 MHz (¹⁹F NMR), or Bruker AV 500 MHz instrument at 500MHz (¹H NMR). Chemical shifts were reported in ppm down field from internal Me₄Si and external CCl₃F, respectively. Multiplicity was indicated as follows: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), dd (doublet of doublet), td (triplet of doublet), ddd (doublet of doublet). Coupling constants were reported in Hertz (Hz). MS were recorded on a VG ZABHS spectrometer with the ESI resource. High resolution mass spectrometry (HRMS) spectra were obtained on a Bruker microTOF-QII instrument. Optical rotations were determined using an Autopol IV-T. HPLC analyses were carried out on a HewlettPackard Model HP 1200 instrument. X-ray structural analysis was conducted on a Bruker APEX-II CCD instrument.

Materials: Tetrahydrofuran (THF), diethyl ether (Et₂O) and toluene (Tol) were distilled from sodium/benzophenone prior to use; CH_2Cl_2 (DCM) and $ClCH_2CH_2Cl$ (DCE) were distilled from CaH₂. MeCN was distilled from P₂O₅; All purchased reagents were used without further purification. Analytical thin layer chromatography was performed on 0.20 mm Qingdao Haiyang silica gel plates. Silica gel (200-300 mesh) (from Qingdao Haiyang Chem. Company, Ltd.) was used for flash chromatography. ((2-diazo-1,1difluoroethyl) sulfonyl) benzene (Ps-DFA) were prepared according to the reported procedure.¹ Chiral disulfonimide catalysts **CDSI-1**, **CDSI-2**, **CDSI-3**, **CDSI-4**, **CDSI-5**, **CDSI-6** were synthesized according to the known procedures.² 2-borono-4-(trifluoromethyl)benzoic acid (**CF₃-COOH-BA**) used in this work are known compounds, prepared according to the literature procedures.³ Mg(TMP)₂ ⁴ and 2,2dihydroxy-1-arylethan-1-one⁵ were both prepared according to the literature.

2 Experimental Section and HPLC Charts for chiral compounds 4 and 5

2.1 Typical procedure I: preparation of racemic Cis-CF₂-aziridine 4

To a 25 mL Schlenk tube equipped with a reflux condenser and an argon balloon at the top of the condenser through a rubber septum was added 2,2-dihydroxy-1-arylethan-1one 1 (0.3 mmol, 1 equiv.), 4-methoxyaniline 2a (40.6 mg, 0.33 mmol), triphenyl borate B(OPh)₃ (8.7 mg, 0.03 mmol), anhydrous Na₂SO₄ (200 mg) and CH₂Cl₂ (1 mL) at room temperature under argon atmosphere. After reaction for 30 minutes at room temperature, the ((2-diazo-1,1-difluoroethyl)sulfonyl)benzene Ps-DFA 3 (104.5 mg, 77.4 uL, 0.45 mmol) was added with Micro syringe and racemic 1,1'-bi-2-naphthol (BINOL, 8.6 mg, 0.03 mmol) in CH₂Cl₂ (1 mL) was added dropwise. The reaction was allowed to stir for 24 hours at 45 °C under argon atmosphere until the consumption of substrates was completed (monitored by TLC). The reaction mixture was extracted with CH₂Cl₂ three times. The combined organic layer was washed with water and brine, and then dried over anhydrous Na₂SO₄, filtered and evaporated under vacuum. The residue was purified neutral column chromatography by alumina (eluting with dichloromethane/petroleum ether) to give racemic Cis-CF₂-aziridine 4.

2.2 Typical procedure II: preparation of chiral Cis-CF₂-aziridine 4

To a 25 mL Schlenk tube equipped with a stirring bar was added 2,2-dihydroxy-1arylethan-1-one **1** (0.3 mmol, 1 equiv.), 4-methoxyaniline **2a** (40.6 mg, 0.33 mmol), 2boronobenzoic acid **COOH-BA** (3.98 mg, 0.024 mmol), anhydrous Na₂SO₄ (200 mg) and toluene (1 mL) at room temperature under argon atmosphere. After reaction for 30 minutes at room temperature, the ((2-diazo-1,1-difluoroethyl)sulfonyl)benzene Ps-DFA **3** (104.5 mg, 77.4 uL, 0.45 mmol) was added with Micro syringe and **CDSI-4** (12.3 mg, 0.015 mmol) in toluene (1 mL) was added dropwise. The reaction was allowed to stir for 24 hours at room temperature under argon atmosphere until the consumption of substrates was completed (monitored by TLC). The reaction mixture was quenched with saturated aq. NaHCO₃ and extracted with Ethyl Acetate three times. The combined organic layer was washed with water and brine, and then dried over anhydrous Na₂SO₄, filtered and evaporated under vacuum. The residue was purified by neutral alumina column chromatography (eluting with dichloromethane/petroleum ether) to give *Cis*-CF₂-aziridine **4**. Enantiomeric excess was determined by chiral HPLC analysis.

((2*R*,3*S*)-3-(difluoro(phenylsulfonyl)methyl)-1-(4-methoxyphenyl)aziridin-2yl)(phenyl)methanone (4a)

The *Cis*-CF₂-aziridine **4a** was obtained as white solid after neutral alumina column chromatography (petroleum ether/dichloromethane = 2/1), 85 mg, 64% yield, 73% ee; M.p. 175.8-176.7 °C; R_f = 0.3 (dichloromethane/ petroleum ether =

3/1); The **4a** with 73% ee (85 mg) was dissolved in an appropriate amount of isopropanol (0.15 mL/mg) with ultrasound for 3 minutes, followed by filtration, and the obtained solution was concentrated to give **4a** with more than 99% ee; Repeating the above operation until the obtained solution was below 99% ee analyzed by HPLC; The obtained solution was combined and concentrated to give **4a** (40% yield, >99% ee). ¹**H NMR** (400 MHz, CDCl₃) δ 8.20 – 8.05 (m, 2H), 7.93 (d, *J* = 7.7 Hz, 2H), 7.71 (t, *J* = 7.5 Hz, 1H), 7.57 (dt, *J* = 15.6, 7.6 Hz, 3H), 7.46 (t, *J* = 7.7 Hz, 2H), 7.25 – 7.17 (m, 2H), 6.90 – 6.81 (m, 2H), 3.77 (s, 3H), 3.67 (d, *J* = 6.6 Hz, 1H), 3.57 (dt, *J* = 16.0, 6.1 Hz, 1H). ¹³**C NMR** (101 MHz, CDCl₃) δ 190.6, 156.7, 143.8, 135.8, 135.5, 134.1, 132.0, 130.9, 129.5, 129.0, 128.8, 121.2, 120.3 (dd, *J*_{C-F} = 291.5, 283.7 Hz), 114.7, 55.6, 45.5, 42.2 (dd, *J*_{C-F} = 30.2, 20.5 Hz). ¹⁹**F NMR** (377 MHz, CDCl₃) δ -102.81 (dd, *J* = 237.2, 5.7 Hz), -106.31 (dd, *J* = 237.2, 16.0 Hz). **HRMS** (ESI) m/z calcd for C₂₃H₂₀NO₄F₂S [M+H]⁺: 444.1081, found: 444.1081; [α]_D²⁰ = 67.2 (c 1.0, CH₂Cl₂), >99% ee; **HPLC** (column, Daicel Chirapak IC, n-Hexane/i-PrOH = 70/30, flow rate 1.0 mL/min, 20 °C detection UV 254 nm) *t*_R of major isomer 38.1 min, *t*_R of minor isomer 26.3 min.

Peak	Ret.Time	Area	Height	Width	Symmetry	Area
#	(min)	mAU *S	(mAU)	(min)	Factor	(%)
1	26.479	1173.6	21.1	0.8439	0.762	49.265
2	39.296	1208.6	13.8	1.1724	0.808	50.735

Peak	Ret.Time	Area	Height	Width	Symmetry	Area
#	(min)	mAU *S	(mAU)	(min)	Factor	(%)
1	26.263	85.3	1.5	0.6986	0.868	0.178
2	38.134	47676	561.9	1.2956	0.52	99.822

((2*R*,3*S*)-3-(difluoro(phenylsulfonyl)methyl)-1-(4-methoxyphenyl)aziridin-2-yl)(p-tolyl)methanone (4b)

The *Cis*-CF₂-aziridine **4b** was obtained as white solid after neutral alumina column chromatography (petroleum ether/dichloromethane = 2/1), 90 mg, 66% yield, 66% ee; M.p. 154.3-154.9 °C; R_f = 0.2 (dichloromethane/ petroleum

ether = 3/1); The **4b** with 66% ee (90 mg) was dissolved in an appropriate amount of isopropanol (0.1 mL/mg) with ultrasound for 3 minutes, followed by filtration, and the obtained solution was concentrated to give **4b** with more than 99% ee; Repeating the above operation until the obtained solution was below 99% ee analyzed by HPLC; The obtained solution was combined and concentrated to give **4b** (46% yield, >99% ee).

¹**H NMR** (400 MHz, CDCl₃) δ 8.04 (d, J = 8.2 Hz, 2H), 7.95 (d, J = 7.8 Hz, 2H), 7.73 (t, J = 7.5 Hz, 1H), 7.57 (t, J = 7.8 Hz, 2H), 7.30 – 7.26 (m, 2H), 7.24 (t, J = 6.1 Hz, 2H), 6.87 (d, J = 8.9 Hz, 2H), 3.79 (s, 3H), 3.67 (d, J = 6.6 Hz, 1H), 3.57 (dt, J = 16.2, 6.1 Hz, 1H), 2.41 (s, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 190.1, 156.7, 145.1, 143.9, 135.8, 133.0, 132.0, 130.9, 129.4, 129.1, 121.2, 120.3 (dd, $J_{C-F} = 291.6, 283.7$ Hz), 114.7, 55.6, 45.5, 42.1 (dd, $J_{C-F} = 30.3, 20.4$ Hz), 21.8. ¹⁹**F NMR** (377 MHz, CDCl₃) δ -102.84 (dd, J = 237.2, 4.2 Hz), -106.52 (dd, J = 237.1, 16.2 Hz). **HRMS** (ESI) m/z calcd for C₂₄H₂₂NO₄F₂S [M+H]⁺: 458.1238, found: 458.1237; [α]_D²⁰ = 91.4 (c 1.0, CH₂Cl₂), >99% ee; **HPLC** (column, Daicel Chirapak IC, n-Hexane/i-PrOH = 70/30, flow rate 1.0 mL/min, 20 °C detection UV 254 nm) $t_{\rm R}$ of major isomer 48.8 min, $t_{\rm R}$ of minor isomer 30.2 min.

Peak	Ret.Time	Area	Height	Width	Symmetry	Area
#	(min)	mAU *S	(mAU)	(min)	Factor	(%)
1	31.334	9801.6	143.4	1.048	0.715	50.756
2	50.232	9509.5	85.1	1.659	0.701	49.244

	W121A/Vadergh-25tm(DDVADPSC11008D)
nvfU]	
1400	
-	
1200	
1	
100	
~~~	
1	
800	$\sim$
660	
1	
400	
1	
200	
1 04	
L	

Peak	Ret.Time	Area	Height	Width	Symmetry	Area
#	(min)	mAU *S	(mAU)	(min)	Factor	(%)
1	30.168	48.8	1.1	0.6399	1.076	0.053
2	48.799	92497.9	792.1	1.7643	0.455	99.947

# ((2*R*,3*S*)-3-(difluoro(phenylsulfonyl)methyl)-1-(4-methoxyphenyl)aziridin-2-yl)(m-tolyl)methanone (4c)



The *Cis*-CF₂-aziridine **4c** was obtained as white solid after neutral alumina column chromatography (petroleum ether/dichloromethane = 2/1), 94 mg, 70% yield, 69% ee; M.p. 157.0-158.0 °C; R_f = 0.3 (dichloromethane/ petroleum

ether = 3/1); The **4c** with 69% ee (94 mg) was dissolved in an appropriate amount of isopropanol (0.15 mL/mg) with ultrasound for 3 minutes, followed by filtration, and the obtained solid with increased ee; Repeating the above operation until the obtained solid was more than 99% ee analyzed by HPLC; The obtained solid **4c** (35% yield, >99% ee).

¹**H NMR** (400 MHz, CDCl₃) δ 7.92 (d, J = 8.1 Hz, 4H), 7.69 (t, J = 7.5 Hz, 1H), 7.53 (t, J = 7.8 Hz, 2H), 7.38 (d, J = 7.5 Hz, 1H), 7.33 (t, J = 7.5 Hz, 1H), 7.20 (d, J = 8.8 Hz, 2H), 6.84 (d, J = 8.9 Hz, 2H), 3.75 (s, 3H), 3.68 (d, J = 6.6 Hz, 1H), 3.56 (dt, J = 16.3, 6.1 Hz, 1H), 2.37 (s, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 190.5, 156.5, 143.8, 138.5, 135.7, 135.3, 134.7, 131.8, 130.7, 129.3, 129.1, 128.5, 126.0, 121.0, 120.2 (dd,  $J_{C-F} = 291.6, 283.4$  Hz), 114.5, 55.4, 45.4, 42.0 (dd,  $J_{C-F} = 30.4, 20.2$  Hz), 21.2. ¹⁹**F NMR** (377 MHz, CDCl₃) δ -102.66 (dt, J = 237.2, 6.0 Hz), -106.51 (dt, J = 237.2, 15.9 Hz). **HRMS** (ESI) m/z calcd for C₂₄H₂₂NO₄F₂S [M+H]⁺: 458.1238, found: 458.1237; [α]_D²⁰ = 80.8 (c 1.0, CH₂Cl₂), 99% ee; **HPLC** (column, Daicel Chirapak IC, n-Hexane/i-PrOH = 70/30, flow rate 1.0 mL/min, 20 °C detection UV 254 nm)  $t_R$  of major isomer 40.4 min,  $t_R$  of minor isomer 27.1 min.



7

Peak	Ret.Time	Area	Height	Width	Symmetry	Area
#	(min)	mAU *S	(mAU)	(min)	Factor	(%)
1	26.584	50779.4	902.6	0.866	0.647	49.595
2	39.764	51609.3	560.9	1.4171	0.546	50.405



Peak	Ret.Time	Area	Height	Width	Symmetry	Area
#	(min)	mAU *S	(mAU)	(min)	Factor	(%)
1	27.089	136.4	2.2	0.752	0.886	0.551
2	40.401	24617.7	251.7	1.4701	0.565	99.449

### ((2*R*,3*S*)-3-(difluoro(phenylsulfonyl)methyl)-1-(4-methoxyphenyl)aziridin-2yl)(4-ethylphenyl)methanone (4d)

The Cis-CF₂-aziridine **4d** was obtained as white solid after neutral alumina column chromatography (petroleum ether/dichloromethane = 2/1), 75 mg, 53% yield, 65% ee; M.p. 160.8-161.6 °C; R_f = 0.25 (dichloromethane/

petroleum ether = 3/1); The **4d** with 65% ee (75 mg) was dissolved in an appropriate amount of isopropanol (0.05 mL/mg) with ultrasound for 3 minutes, followed by filtration, and the obtained solution was concentrated to give **4d** with more than 99% ee; Repeating the above operation until the obtained solution was below 99% ee analyzed by HPLC; The obtained solution was combined and concentrated to give **4d** (32% yield, >99% ee).

¹**H NMR** (400 MHz, CDCl₃) δ 8.05 (d, J = 8.2 Hz, 2H), 7.94 (d, J = 7.8 Hz, 2H), 7.71 (t, J = 7.5 Hz, 1H), 7.55 (t, J = 7.9 Hz, 2H), 7.28 (d, J = 8.2 Hz, 2H), 7.25 – 7.17 (m, 2H), 6.91 – 6.80 (m, 2H), 3.77 (s, 3H), 3.65 (d, J = 6.6 Hz, 1H), 3.61 – 3.51 (m, 1H), 2.69 (q, J = 7.6 Hz, 2H), 1.24 (t, J = 7.6 Hz, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 190.1, 156.7, 151.2, 144.0, 135.8, 133.3, 132.1, 131.0, 129.5, 129.2, 128.3, 121.2, 120.3 (dd,  $J_{C-F} = 291.6, 283.6$  Hz), 114.7, 55.7, 45.5, 42.1 (dd,  $J_{C-F} = 30.4, 20.2$  Hz), 29.1, 15.1. ¹⁹**F NMR** (377 MHz, CDCl₃) δ -102.71 (dd, J = 237.2, 5.1 Hz), -106.61 (dd, J = 237.2, 16.3 Hz). **HRMS** (ESI) m/z calcd for C₂₅H₂₄NO₄F₂S [M+H]⁺: 472.1394, found: 472.1395; [α]_D²⁰ = 76.8 (c 1.0, CH₂Cl₂), 99% ee; **HPLC** (column, Daicel Chirapak IC, n-Hexane/i-PrOH = 70/30, flow rate 1.0 mL/min, 20 °C detection UV 254 nm)  $t_R$  of major isomer 44.0 min,  $t_R$  of minor isomer 30.1 min.



Peak	Ret.Time	Area	Height	Width	Symmetry	Area
#	(min)	mAU *S	(mAU)	(min)	Factor	(%)
1	30.116	8571.6	131.4	1	0.74	51.615
2	45.543	8035.2	79.3	1.5426	0.727	48.385



Peak	Ret.Time	Area	Height	Width	Symmetry	Area
#	(min)	mAU *S	(mAU)	(min)	Factor	(%)
1	30.102	908.9	10.8	1.2291	1.282	0.434
2	43.998	208671.1	1725.6	1.7894	0.374	99.566

### ((2*R*,3*S*)-3-(difluoro(phenylsulfonyl)methyl)-1-(4-methoxyphenyl)aziridin-2yl)(4-fluorophenyl)methanone (4e)



The *Cis*-CF₂-aziridine **4e** was obtained as white solid after neutral alumina column chromatography (petroleum ether/dichloromethane = 2/1), 61 mg, 44% yield, 48% ee; M.p. 150.1-150.8 °C; R_f = 0.4 (dichloromethane/ petroleum ether

= 3/1); The **4e** with 48% ee (61 mg) was dissolved in an appropriate amount of isopropanol (0.05 mL/mg) with ultrasound for 3 minutes, followed by filtration, and the obtained solution was concentrated to give **4e** with more than 90% ee; Repeating the above operation until the obtained solution was below 90% ee analyzed by HPLC; The obtained solution was combined and concentrated to give **4e** (27% yield, 95% ee determined by HPLC).

¹**H** NMR (400 MHz, CDCl₃)  $\delta$  8.23 – 8.12 (m, 2H), 7.94 (d, J = 7.7 Hz, 2H), 7.74 (t, J = 7.5 Hz, 1H), 7.57 (t, J = 7.9 Hz, 2H), 7.23 – 7.18 (m, 2H), 7.17 – 7.10 (m, 2H), 6.90 – 6.81 (m, 2H), 3.79 (s, 3H), 3.62 (d, J = 6.5 Hz, 1H), 3.55 (dt, J = 15.3, 6.4 Hz, 1H).

¹³**C NMR** (101 MHz, CDCl₃) δ 189.3, 166.3 (d,  $J_{C-F} = 254.9$  Hz), 156.9, 143.7, 135.9, 132.1, 132.0, 131.9 (d,  $J_{C-F} = 9.5$  Hz), 131.0, 129.5, 121.2, 120.3 (dd,  $J_{C-F} = 291.1$ , 284.0 Hz), 116.0 (d,  $J_{C-F} = 21.9$  Hz), 114.9, 55.7, 45.4, 42.2 (dd,  $J_{C-F} = 29.7$ , 20.8 Hz). ¹⁹**F NMR** (377 MHz, CDCl₃) δ -103.21 (tt, J = 8.4, 5.4 Hz), -103.35 (dd, J = 237.4, 6.2 Hz), -106.00 (dd, J = 237.4, 15.3 Hz). **HRMS** (ESI) m/z calcd for C₂₃H₁₉NO₄F₃S [M+H]⁺: 462.0987, found: 462.0980; [α]_D²⁰ = 61.6 (c 1.0, CH₂Cl₂), 95% ee; **HPLC** (column, Daicel Chirapak IC, n-Hexane/i-PrOH = 70/30, flow rate 1.0 mL/min, 20 °C detection UV 254 nm)  $t_{R}$  of major isomer 31.2 min,  $t_{R}$  of minor isomer 22.4 min.



Peak	Ret.Time	Area	Height	Width	Symmetry	Area
#	(min)	mAU *S	(mAU)	(min)	Factor	(%)
1	22.273	12384.4	274.8	0.6946	0.723	49.578
2	31.774	12595.5	180.2	1.0574	0.645	50.422



Peak	Ret.Time	Area	Height	Width	Symmetry	Area
#	(min)	mAU *S	(mAU)	(min)	Factor	(%)
1	22.423	2067.3	44.6	0.7123	0.834	2.667
2	31.165	75454.7	1022.4	1.1056	0.449	97.333

### (4-chlorophenyl)((2*R*,3*S*)-3-(difluoro(phenylsulfonyl)methyl)-1-(4methoxyphenyl)aziridin-2-yl)methanone (4f)



The *Cis*-CF₂-aziridine **4f** was obtained as white solid after neutral alumina column chromatography (petroleum ether/dichloromethane = 2/1), 59 mg, 41% yield, 49% ee; M.p. 134.9-135.8 °C; R_f = 0.4 (dichloromethane/ petroleum

ether = 3/1); The 4f with 49% ee (59 mg) was dissolved in an appropriate amount of

isopropanol (0.05 mL/mg) with ultrasound for 3 minutes, followed by filtration, and the obtained solution was concentrated to give **4f** with more than 90% ee; Repeating the above operation until the obtained solution was below 90% ee analyzed by HPLC; The obtained solution was combined and concentrated to give **4f** (26% yield, 97% ee determined by HPLC).

¹**H** NMR (400 MHz, CDCl₃) δ 8.08 (d, J = 8.6 Hz, 2H), 7.94 (d, J = 7.8 Hz, 2H), 7.74 (t, J = 7.5 Hz, 1H), 7.58 (t, J = 7.8 Hz, 2H), 7.44 (d, J = 8.5 Hz, 2H), 7.20 (d, J = 8.9 Hz, 2H), 6.87 (d, J = 8.9 Hz, 2H), 3.79 (s, 3H), 3.61 (d, J = 6.5 Hz, 1H), 3.55 (dt, J = 15.0, 6.4 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 189.8, 156.9, 143.6, 140.7, 136.0, 133.9, 132.0, 131.0, 130.5, 129.6, 129.2, 121.2, 120.3 (dd,  $J_{C-F} = 291.1$ , 284.2 Hz), 114.9, 55.7, 45.4, 42.3 (dd,  $J_{C-F} = 29.6$ , 20.9 Hz). ¹⁹F NMR (377 MHz, CDCl₃) δ - 103.35 (dd, J = 237.4, 6.3 Hz), -105.87 (dd, J = 237.4, 15.1 Hz). HRMS (ESI) m/z calcd for C₂₃H₁₉NO₄F₂SCl [M+H]⁺: 478.0691, found: 478.0693; [α]_D²⁰ = 58.4 (c 1.0, CH₂Cl₂), 97% ee; HPLC (column, Daicel Chirapak IC, n-Hexane/i-PrOH = 70/30, flow rate 1.0 mL/min, 20 °C detection UV 254 nm)  $t_R$  of major isomer 29.9 min,  $t_R$  of minor isomer 22.7 min.



Peak	Ret.Time	Area	Height	Width	Symmetry	Area
#	(min)	mAU *S	(mAU)	(min)	Factor	(%)
1	22.552	3533.5	74.3	0.7295	0.751	49.357
2	30.857	3625.6	53.7	1.0384	0.752	50.643



Peak	Ret.Time	Area	Height	Width	Symmetry	Area
#	(min)	mAU *S	(mAU)	(min)	Factor	(%)
1	22.679	2417.5	43.1	0.8233	0.769	1.324
2	29.886	180194.8	2357.7	1.1538	0.377	98.676

### (4-bromophenyl)((2*R*,3*S*)-3-(difluoro(phenylsulfonyl)methyl)-1-(4methoxyphenyl)aziridin-2-yl)methanone (4g)



The *Cis*-CF₂-aziridine **4g** was obtained as white solid after neutral alumina column chromatography (petroleum ether/dichloromethane = 2/1), 60 mg, 38% yield, 35% ee; M.p. 146.1-146.9 °C; R_f = 0.4 (dichloromethane/ petroleum

ether = 3/1); The **4g** with 35% ee (60 mg) was dissolved in an appropriate amount of isopropanol (0.2 mL/mg) with ultrasound for 3 minutes, followed by filtration, and the obtained solution was concentrated to give **4g** with more than 90% ee; Repeating the above operation until the obtained solution was below 90% ee analyzed by HPLC; The obtained solution was combined and concentrated to give **4g** (20% yield, 95% ee determined by HPLC).

¹**H NMR** (400 MHz, CDCl₃) δ 8.00 (d, J = 8.5 Hz, 2H), 7.94 (d, J = 7.8 Hz, 2H), 7.74 (t, J = 7.5 Hz, 1H), 7.59 (dd, J = 17.1, 8.3 Hz, 4H), 7.23 – 7.15 (m, 2H), 6.87 (t, J = 6.0 Hz, 2H), 3.79 (s, 3H), 3.61 (d, J = 6.5 Hz, 1H), 3.55 (dt, J = 15.1, 6.4 Hz, 1H). ¹³**C NMR** (101 MHz, CDCl₃) δ 190.0, 156.9, 143.6, 135.9, 134.3, 132.2, 132.0, 131.0, 130.5, 129.6, 129.5, 121.2, 120.3 (dd,  $J_{C-F} = 291.1$ , 284.2 Hz), 114.9, 55.7, 45.4, 42.3 (dd,  $J_{C-F} = 29.7$ , 21.0 Hz). ¹⁹**F NMR** (377 MHz, CDCl₃) δ -103.34 (dd, J = 237.4, 6.3 Hz), -105.84 (dd, J = 237.4, 15.0 Hz). **HRMS** (ESI) m/z calcd for C₂₃H₁₉NO₄F₂SBr [M+H]⁺: 522.0186, found: 522.0184; [ $\alpha$ ]_D²⁰ = 53.8 (c 1.0, CH₂Cl₂), 95% ee; **HPLC** (column, Daicel Chirapak IC, n-Hexane/i-PrOH = 70/30, flow rate 1.0 mL/min, 20 °C detection UV 254 nm)  $t_{\rm R}$  of major isomer 33.2 min,  $t_{\rm R}$  of minor isomer 24.8 min.



Peak	Ret.Time	Area	Height	Width	Symmetry	Area
#	(min)	mAU *S	(mAU)	(min)	Factor	(%)
1	24.559	12743.6	238.3	0.8191	0.689	50.344
2	33.309	12569.3	171.7	1.128	0.7	49.656



Peak	Ret.Time	Area	Height	Width	Symmetry	Area
#	(min)	mAU *S	(mAU)	(min)	Factor	(%)
1	24.801	1515.9	25.5	0.892	0.756	2.577
2	33.247	57306.3	744.6	1.157	0.574	97.423

# ((2*R*,3*S*)-3-(difluoro(phenylsulfonyl)methyl)-1-(4-methoxyphenyl)aziridin-2-yl)(naphthalen-2-yl)methanone (4h)



The *Cis*-CF₂-aziridine **4h** was obtained as white solid after neutral alumina column chromatography (petroleum ether/dichloromethane = 2/1), 70 mg, 47% yield, 50% ee; M.p. 163.6-164.5 °C; R_f = 0.2 (dichloromethane/ petroleum

ether = 3/1); The **4h** with 50% ee (70 mg) was dissolved in an appropriate amount of isopropanol (0.2 mL/mg) with ultrasound for 3 minutes, followed by filtration, and the obtained solution was concentrated to give **4h** with 99% ee; Repeating the above operation until the obtained solution was below 99% ee analyzed by HPLC; The obtained solution was combined and concentrated to give **4h** (22% yield, 99% ee).

¹**H NMR** (400 MHz, CDCl₃) δ 8.71 (s, 1H), 8.12 (dd, J = 8.6, 1.4 Hz, 1H), 7.99 – 7.82 (m, 5H), 7.67 (t, J = 7.5 Hz, 1H), 7.60 (t, J = 7.4 Hz, 1H), 7.57 – 7.48 (m, 3H), 7.31 – 7.21 (m, 2H), 6.88 (d, J = 8.8 Hz, 2H), 3.83 – 3.76 (m, 4H), 3.65 (dt, J = 15.8, 6.3 Hz, 1H). ¹³**C NMR** (101 MHz, CDCl₃) δ 190.5, 156.8, 143.9, 136.1, 135.8, 132.8, 132.5, 132.0, 131.3, 130.9, 130.0, 129.5, 129.1, 128.7, 127.9, 127.1, 124.1, 121.3, 120.4 (dd,  $J_{C-F} = 291.5$ , 283.9 Hz), 114.8, 55.7, 45.7, 42.3 (dd,  $J_{C-F} = 30.0$ , 20.5 Hz). ¹⁹**F NMR** (377 MHz, CDCl₃) δ -102.28 – -103.67 (m), -106.15 (ddd, J = 237.3, 15.8, 2.9 Hz). **HRMS** (ESI) m/z calcd for C₂₇H₂₂NO₄F₂S [M+H]⁺: 494.1238, found: 494.1235; [α]_D²⁰ = 107.4 (c 1.0, CH₂Cl₂), 99% ee; **HPLC** (column, Daicel Chirapak IC, n-Hexane/i-PrOH = 70/30, flow rate 1.0 mL/min, 20 °C detection UV 254 nm)  $t_R$  of major isomer 48.4 min,  $t_R$  of minor isomer 32.4 min.



Peak	Ret.Time	Area	Height	Width	Symmetry	Area
#	(min)	mAU *S	(mAU)	(min)	Factor	(%)
1	31.844	107260.8	1285.3	1.2532	0.932	51.877
2	48.007	99500.1	830.4	1.8288	0.582	48.123



Peak	Ret.Time	Area	Height	Width	Symmetry	Area
#	(min)	mAU *S	(mAU)	(min)	Factor	(%)
1	32.394	629.7	9.5	0.9579	0.375	0.487
2	48.43	128714.2	1068.8	1.8593	0.586	99.513

#### 2.3 Preparation of compound 5a⁶



To solution of **4a** (44.3 mg, 0.1 mmol, >99.5% ee) in CH₃CN (2 mL) at Schlenk tube (25 mL) under argon atmosphere was placed in ice water bath and added (NH₄)₂Ce(NO₃)₆ (185 mg, 0.3 mmol) in H₂O (1.4 mL) dropwise. After stirred at the temperature for 45 minutes, the reaction mixture was quenched with saturated aq. Na₂SO₃, and extracted three times with CH₂Cl₂. The combined organic layer was washed with water and brine, and then dried over anhydrous Na₂SO₄, filtered and evaporated under vacuum. The obtained solid was purified by silica gel column chromatography (eluting with petroleum ether/ethyl acetate) to give ((2*R*,3*S*)-3-(difluoro(phenylsulfonyl)methyl)aziridin-2-yl)(phenyl)methanone **5a** as white solid with 81% yield, >99.9% ee. M.p. 165.8-166.4 °C; R_f = 0.2 (petroleum ether/ethyl acetate = 5/1).

#### ((2R,3S)-3-(difluoro(phenylsulfonyl)methyl)aziridin-2-yl)(phenyl)methanone (5a)

129.5, 128.9, 128.9, 120.8 (t,  $J_{C-F} = 289.0 \text{ Hz}$ ), 39.0, 36.7 (t,  $J_{C-F} = 25.2 \text{ Hz}$ ). ¹⁹**F NMR** (377 MHz, CDCl₃)  $\delta$  -103.42 (dd, J = 235.3, 11.9 Hz), -104.66 (d, J = 234.5 Hz). **HRMS** (ESI) m/z calcd for C₁₆H₁₄NO₃F₂S [M+H]⁺: 338.0662, found: 338.0670; [ $\alpha$ ]_D²⁰ = 116.4 (c 1.0, CH₂Cl₂), >99.9% ee; **HPLC** (column, Daicel Chirapak IC, n-Hexane/i-

PrOH = 70/30, flow rate 1.0 mL/min, 20 °C detection UV 254 nm)  $t_R$  of major isomer 20.5 min,  $t_R$  of minor isomer 36.3 min.



Peak	Ret.Time	Area	Height	Width	Symmetry	Area
#	(min)	mAU *S	(mAU)	(min)	Factor	(%)
1	20.699	3870.3	99.8	0.5922	0.748	50.352
2	36.404	3816.2	57.8	1.0235	0.818	49.648



Peak	Ret.Time	Area	Height	Width	Symmetry	Area
#	(min)	mAU *S	(mAU)	(min)	Factor	(%)
1	20.516	7726.7	201.6	0.5899	0.708	99.959
2	36.303	3.2	3.1E-1	0.1296	0	0.041

#### 2.4 Preparation of compound 5b⁷

To solution of **4a** (44.3 mg, 0.1 mmol, >99.5% ee) in EtOH (2 mL) at round-bottom flask (10 mL) was cooled 0 °C and added NaBH₄ (6 mg, 0.15 mmol) in small amounts. After being stirred at the temperature for 12 h, the reaction mixture was quenched by addition of H₂O and acidified with 4 M aq. HCl, and extracted three times with CH₂Cl₂. The combined organic layer was washed with water and brine, and then dried over anhydrous Na₂SO₄, filtered and evaporated under vacuum. The residue was purified by silica gel column chromatography (eluting with petroleum ether/ethyl acetate) to give ((2R,3S)-3-(difluoro(phenylsulfonyl)methyl)aziridin-2-yl)(phenyl)methanone**5b**as

white solid with 95% yield, >99.5% ee. M.p. 39.0-40.0 °C;  $R_f = 0.6$  (petroleum ether/ethyl acetate = 5/1).

## (S)-((2R,3S)-3-(difluoro(phenylsulfonyl)methyl)-1-(4-methoxyphenyl)aziridin-2yl)(phenyl)methanol (5b)

^{PMP} ^{Ph} ^{Ph</sub>}



Peak	Ret.Time	Area	Height	Width	Symmetry	Area
#	(min)	mAU *S	(mAU)	(min)	Factor	(%)
1	8.46	2994	173.8	0.2651	0.833	49.926
2	11.455	3003	139.9	0.3291	0.777	50.074



Peak	Ret.Time	Area	Height	Width	Symmetry	Area
#	(min)	mAU *S	(mAU)	(min)	Factor	(%)
1	8.48	5.3	2.8E-1	0.2694	0.926	0.148
2	11.441	3542.3	164.5	0.3328	0.769	99.852

#### 2.5 Preparation of compound 5c⁸



The *Cis*-CF₂-aziridine **4a** (44.3 mg, 0.1 mmol, >99.5% ee) was dissolved in acetone (4 mL) at two-mouth round-bottom flask. To this solution was added 6 N aq. HCl (2 mL) dropwise at room temperature. The flask was then equipped with an air condenser and an argon balloon at the top of the condenser through a rubber septum. The solution was stirred at 40 °C for 6 hours until the consumption of **4a** was completed (monitored by TLC). The solution was then cooled to room temperature and quenched with saturated aq. NaHCO₃ until no bubbles generated, and extracted three times with CH₂Cl₂. The combined organic layer was washed with water and brine, and then dried over anhydrous Na₂SO₄, filtered and evaporated under vacuum. The obtained solid was dissolved in CH₂Cl₂ (1 mL), and performed two-phase recrystallization with 45 mL of petroleum ether at room temperature. The (2*S*,3*R*)-2-chloro-4,4-difluoro-3-((4-methoxyphenyl)amino)-1-phenyl-4-(phenylsulfonyl)butan-1-one **5c** was collected as white solid with 89% yield, >99.9% ee. M.p. 140.3-141.2 °C; R_f = 0.4 (petroleum ether/ethyl acetate = 5/1).

## (2*S*,3*R*)-2-chloro-4,4-difluoro-3-((4-methoxyphenyl)amino)-1-phenyl-4-(phenylsulfonyl)butan-1-one (5c)



(ddt, J = 21.3, 10.8, 5.2 Hz, 1H), 3.66 (s, 3H). ¹³C NMR (101 MHz, DMSO-d₆)  $\delta$  191.1, 152.1, 139.9, 136.0, 134.4, 133.5, 132.7, 130.0, 129.7, 129.2, 128.7, 121.6 (t,  $J_{C-F} = 295.7$  Hz), 114.9, 114.3, 58.3, 55.2, 54.5 (dd,  $J_{C-F} = 23.6$ , 17.8 Hz). ¹⁹F NMR (377 MHz, DMSO-d₆)  $\delta$  -101.01 (dd, J = 234.2, 4.7 Hz), -109.11 (dd, J = 234.1, 20.6 Hz). HRMS (ESI) m/z calcd for C₂₃H₂₁NO₄F₂SC1 [M+H]⁺: 480.0848, found: 480.0849;  $[\alpha]_D^{20} = -123.6$  (c 1.0, CH₂Cl₂), >99% ee; HPLC (column, Daicel Chirapak IC, n-Hexane/i-PrOH = 90/10, flow rate 1.0 mL/min, 20 °C detection UV 254 nm)  $t_R$  of major isomer 20.2 min,  $t_R$  of minor isomer 26.2 min.

	W/DIA/Vadergh-254mm(DDAVA/D43C31101433D)	
na U -	۲u)	
800	ഞ	
700	700	
ഞ	ഞ	
500	500 	
400	400	B
300	300	
200		
100- 0-		
1 *		

Peak	Ret.Time	Area	Height	Width	Symmetry	Area
#	(min)	mAU *S	(mAU)	(min)	Factor	(%)
1	20.221	16447.2	430.7	0.5824	0.718	50.090
2	25.945	16388.2	352.9	0.7135	0.707	49.910



Peak	Ret.Time	Area	Height	Width	Symmetry	Area
#	(min)	mAU *S	(mAU)	(min)	Factor	(%)
1	20.229	8066.9	216.7	0.5713	0.739	99.924
2	26.156	6.2	1.2E-1	0.6309	5.851	0.076

# **3** Reference

- [1] Zeng, J.-L.; Zhang, F.-G.; Ma, J.-A. Org. Lett. 2019, 21, 8244.
- [2] He, H.; Le, A. W. M. Eur. J. Org. Chem. 2010, 4181–4184.
- [3] Hashimoto, T.; Maruoka, K. J. Am. Chem. Soc. 2013, 135, 17667-17670.
- [4] Ooi, T.; Uematsu, Y.; Maruoka, K. J. Org. Chem. 2003, 68, 4576.
- [5] Wang, P.; Liao, S.; Tang, Y. J. Am. Chem. Soc. 2013, 135, 16849–16852.
- [6] Chai, Z.; Bouillon, J.-P.; Cahard, D. Chem. Commun. 2012, 48, 9471–9473.
- [7] Suzuki, T.; Mori, K.; Akiyama, T. Org. Lett. 2009, 11, 2445-2447.
- [8] Gupta, A. K.; Mukherjee, M.; Wulff, W. D. Org. Lett. 2011, 13, 5866-5869.

## 4 NMR spectra of all the new compounds

























































## 5 X-Ray Crystallographic Data

5.1 The X-ray crystallographic structures for compound **4a**. Crystal data have been deposited to CCDC, number 1983642.



## Table 1 Crystal data and structure refinement for Compound 4a

Identification code	22019902TXF_0m
Empirical formula	$C_{23}H_{19}F_2NO_4S$
Formula weight	443.45
Temperature/K	173.0
Crystal system	monoclinic
Space group	P21
a/Å	8.9940 (4)
b/Å	10.3367 (5)
c/Å	11.4489 (5)
$\alpha/^{\circ}$	90
β/°	91.170 (2)
γ/°	90
Volume/Å ³	1064.16 (8)
Z	2
pcalcg/cm ³	1.384
µ/mm ⁻¹	1.773
F (000)	460.0
Crystal size/mm ³	0.19  imes 0.15  imes 0.12
Radiatio	$CuK\alpha \ (\lambda = 1.54184)$
$2\Theta$ range for data collection/°	12.392 to 133.332
Index ranges	$10 \le h \le 10, -12 \le k \le 11, -13 \le l \le 13$
Reflections collected	8172
Independent reflections	$3473 [R_{int} = 0.0278, R_{sigma} = 0.0417]$
Data/restraints/parameters	3473/1/281
Goodness-of-fit on F ²	1.117
Final R indexes [I>= $2\sigma$ (I)]	$R_1 = 0.0302, wR_2 = 0.0771$
Final R indexes [all data]	$R_1 = 0.0304, wR_2 = 0.0772$
Largest diff. peak/hole / e Å ⁻³	0.24/-0.29
Flack parameter	0.064 (8)

5.2 The X-ray crystallographic structures for compound **5c**. Crystal data have been deposited to CCDC, number 1983643.



# Table 1 Crystal data and structure refinement for Compound 5c

Identification code	DS
Empirical formula	$C_{23}H_{20}ClF_2NO_4S$
Formula weight	479.91
Temperature/K	170.0
Crystal system	monoclinic
Space group	P21
a/Å	5.5826 (8)
b/Å	16.132 (2)
c/Å	11.8958 (13)
$\alpha/^{\circ}$	90
β/°	90.12 (5)
$\gamma/^{\circ}$	90
Volume/Å ³	1071.3 (2)
Z	2
pcalcg/cm ³	1.488
$\mu/\text{mm}^{-1}$	0.325
F (000)	496.0
Crystal size/mm ³	$0.19 \times 0.12 \times 0.08$
Radiation	MoKa ( $\lambda = 0.71073$ )
$2\Theta$ range for data collection/°	5.05 to 53.128
Index ranges	$-6 \le h \le 7, -20 \le k \le 19, -14 \le l \le 14$
Reflections collected	12417
Independent reflections	4273 [ $R_{int} = 0.0518$ , $R_{sigma} = 0.0626$ ]
Data/restraints/parameters	4273/1/290
Goodness-of-fit on F ²	1.035
Final R indexes [I>= $2\sigma$ (I)]	$R_1 = 0.0434, wR_2 = 0.0836$
Final R indexes [all data]	$R_1 = 0.0685, wR_2 = 0.0982$
Largest diff. peak/hole / e Å ⁻³	0.25/-0.32
Flack parameter	-0.07 (5)