Supporting Information

Synthesis of pyrrolidinedione-fused hexahydropyrrolo[2,1*a*]isoquinolines *via* three-component [3+2] cycloaddition followed by one-pot *N*-allylation and intramolecular Heck reactions

Xiaoming Ma, Suzhi Meng, Xiaofeng Zhang, Qiang Zhang, Shenghu Yan, Yue Zhang, Wei Zhang

Table of Contents

1.	General information	S1
2.	General procedure for the synthesis of pyrrolidine adduct 5	S2
3.	General procedure for the synthesis of pyrrolidine adduct 6	S2
4.	General procedure for the synthesis of products 9 or 11	S2
5.	General procedure for the synthesis of of products 12	S2
6.	Characterization of selected pyrrolidine adduct 5 and 6	S 3
7.	Characterization of products 9, 11 and 12	
8.	¹ H NMR and ¹³ C NMR of selected pyrrolidine adduct 5 and 6	S11
9.	¹ H NMR, ¹³ C NMR and ¹⁹ F NMR of products 9, 11 and 12	S19

1. General Information

Chemicals and solvents were purchased from commercial source and used without further purification. ¹H (300 or 400 MHz), ¹³C NMR spectra (75 MHz) and ¹⁹F NMR (282 MHz) were recorded on Bruker NMR spectrometers. LC-MS were performed on an Agilent 2100 system with C18 column (5.0 µm, 6.0 x 50 mm). The mobile phases were MeOH and H₂O both containing 0.05% trifluoroacetic acid. A linear gradient was used to increase from 25:75 v/v MeOH/H₂O to 100% MeOH in 7.0 min at a flow rate of 0.7 mL/min. UV detections were conducted at 210 nm, 254 nm and 365 nm. Low resolution mass spectra were recorded in APCI (atmospheric pressure chemical ionization). HRMS were performed on Agilent 6540 Q-TOF mass spectrometer (ESI). Flash column chromatography was performed using silica gel (200-300 mesh).

2. General procedures for the synthesis of pyrrolidine adducts 5

A solution of amino ester 1 (1.2 mmol), 2-bromobenzaldehyde 3 (1 mmol) and maleimide 4 (1.1 mmol) in EtOH (3 mL) with Et_3N (1.5 mmol) was heated at 110 °C for 6 h in a sealed vial. The concentrated reaction mixture was isolated by column chromatography on silica gel to afford adduct 5 in 85-90% yield.

3. General procedures for the synthesis of pyrrolidine adducts 6

A solution of 2-aminoisobutyric acid 2 (1.2 mmol), 2-bromobenzaldehyde 3 (1 mmol) and maleimide 4 (1 mmol) in MeCN (3 mL) with AcOH (0.3 mmol) was heated at 110 °C for 6 h in a sealed vial. The concentrated reaction mixture was isolated by column chromatography on silica gel to afford adduct 6 in 75%-85% yield. Selected compound characterization data for adduct 6 are listed below.

4. General procedures for the synthesis of products 9 or 11

To a solution of pyrrolidine adduct **5** or **6** (0.5 mmol), 3-bromopropene **7** (1.5 mmol) in MeCN (3 mL) was added K_2CO_3 (1 mmol), the mixture was heated at 105 °C for 4 h in a sealed vial. Upon the completion of reaction as monitored by HPLC or LC-MS, the mixture was evaporated under vacuum to remove unreacted 3-bromopropene to give crude *N*-allylation intermediate **8**. Without further purification, it was used for the Heck reaction with Pd(OAc)₂ (0.05 mmol), PPh₃ (0.1 mmol), K₂CO₃ (1 mmol) and NaOAc (0.5 mmol) in MeCN (3 mL) at 105 °C for 3 h under nitrogen atmosphere. After aqueous work up, the crude product was purified by flash chromatography to afford product **9** or **11**.

5. General procedures for the synthesis of products 12

To a solution of pyrrolidine adduct **5** or **6** (0.5 mmol), cinnamyl bromide (1.5 mmol) in MeCN (3 mL) was added K_2CO_3 (1 mmol), the mixture was heated at 105 °C for 4 h in a sealed vial. Upon the completion of reaction as monitored by HPLC or LC-MS, the mixture was evaporated and the unreacted cinnamyl bromide was isolated to give *N*-allylation intermediate which was then used for the Heck reaction with Pd(OAc)₂ (10 mol%), PPh₃ (20 mol%), K_2CO_3 (2 equiv) and NaOAc (1 equiv) in MeCN (3 mL) at 105 °C for 3 h under nitrogen atmosphere. After aqueous work up, the crude product was purified by flash chromatography to afford product **12**.

6. Characterization of selected pyrrolidine adducts 5 and 6

Ethyl(1*R*,3*S*,3*aR*,6*aS*)-3-(2-bromophenyl)-5-ethyl-1-methyl-4,6-dioxooctahydropyrrolo[3,4-c]pyrrole-1-carboxylate (**5b**)

White solid, 368 mg, 90 yield. ¹H NMR (300 MHz, CDCl₃) δ 7.60 (dd, J = 7.8, 1.3 Hz, 1H), 7.50 – 7.43 (m, 1H), 7.27 (s, 1H), 7.17 (td, J = 7.6, 1.7 Hz, 1H), 5.00 (dd, J = 8.4, 5.2 Hz, 1H), 4.34 (qd, J = 7.1, 1.0 Hz, 2H), 3.81 (dd, J = 8.8, 7.7 Hz, 1H), 3.31 (ddd, J = 22.2, 13.5, 7.2 Hz, 3H), 2.29 (d, J = 4.9 Hz, 1H), 1.65 (s, 3H), 1.39 (t, J = 7.2 Hz, 3H), 0.97 (t, J = 7.2 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 175.5, 174.1, 172.3, 136.8, 132.5, 129.5, 127.40 (d, J = 2.3 Hz), 124.4, 66.8, 61.7, 60.4, 54.6, 46.9, 33.8, 24.0, 14.1, 13.1.

Methyl (1R,3S,3aR,6aS)-3-(2-bromophenyl)-5-ethyl-1-methyl-4,6-dioxooctahydropyrrolo[3,4-c]pyrrole-1-carboxylate (**5c**)

White solid, 355 mg, 90% yield. ¹H NMR (300 MHz, CDCl₃) δ 7.59 (dd, J = 7.8, 1.3 Hz, 1H), 7.47 (dd, J = 7.7, 1.6 Hz, 1H), 7.30 – 7.22 (m, 1H), 7.17 (td, J = 7.6, 1.8 Hz, 1H), 5.00 (dd, J = 8.8, 6.5 Hz, 1H), 3.88 (s, 3H), 3.81 (dd, J = 8.8, 7.7 Hz, 1H), 3.31 (ddd, J = 22.2, 11.0, 4.3 Hz, 3H), 2.26 (d, J = 6.3 Hz, 1H), 1.65 (s, 3H), 0.97 (t, J = 7.2 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 175.6, 174.0, 172.8, 136.8, 132.5, 129.5, 127.4 (d, J = 2.1 Hz), 124.4, 66.8, 60.42 (s), 54.6, 52.7, 46.8, 33.8, 23.9, 13.0.

Ethyl(*1R*,*3S*,*3aR*,*6aS*)-*3*-(*2*-*bromo*-*5*-*methoxyphenyl*)-*1*,*5*-*dimethyl*-*4*,*6*-*dioxooctahydropyrrolo*[*3*,*4*-*c*]*pyrrole*-*1*-*carboxylate*(**5h**)

White solid, 361 mg, 85% yield. ¹H NMR (300 MHz, CDCl₃) δ 7.47 (d, J = 8.7 Hz, 1H), 7.03 (d, J = 3.0 Hz, 1H), 6.72 (dd, J = 8.7, 3.1 Hz, 1H), 4.93 (d, J = 8.0 Hz, 1H), 4.33 (q, J = 7.1 Hz, 2H), 3.91 – 3.78 (m, 1H), 3.74 (s, 3H), 3.27 (d, J = 7.6 Hz, 1H), 2.78 (s, 3H), 2.24 (s, 1H), 1.64 (s, 3H), 1.38 (t, J = 7.2 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 175.7, 174.2, 172.3, 159.2, 138.1, 133.1, 114.5 (d, J = 7.1 Hz), 113.6, 66.7, 61.7, 60.3, 55.5, 54.5, 47.2, 24.8, 24.0, 14.1.

Ethyl (1R,3S,3aR,6aS)-5-benzyl-3-(2-bromo-4-methylphenyl)-1-methyl-4,6-dioxooctahydro-pyrrolo[3,4-c]pyrrole-1-carboxylate (5i)

White solid, 422 mg, 87% yield. ¹H NMR (300 MHz, CDCl₃) δ 7.39 (d, J = 0.8 Hz, 1H), 7.25 (d, J = 1.1 Hz, 5H), 6.99 (d, J = 7.9 Hz, 1H), 6.80 (d, J = 7.9 Hz, 1H), 5.00 – 4.90 (m, 1H), 4.41 (d, J = 4.9 Hz, 2H), 4.33 (q, J = 6.9 Hz, 2H), 3.81 – 3.74 (m, 1H), 3.27 (d, J = 7.6 Hz, 1H), 2.27 (d, J = 7.2 Hz, 4H), 1.63 (s, 3H), 1.37 (t, J = 7.2 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 175.3, 174.0, 172.2, 139.3, 135.6, 133.1 (d, J = 18.1 Hz), 129.0, 128.4 (d, J = 12.9 Hz), 127.8, 126.9,

123.9, 66.9, 61.8, 60.5, 54.9, 47.2, 42.4, 23.9, 20.8, 14.1.

Methyl (1R,3S,3aR,6aS)-3-(2-bromonaphthalen-1-yl)-5-ethyl-1-methyl-4,6-dioxooctahydro-pyrrolo[3,4-c]pyrrole-1-carboxylate (**5m**)

White solid, 382 mg, 86% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.35 (d, *J* = 8.5 Hz, 1H), 7.80 (d, *J* = 8.1 Hz, 1H), 7.75 (d, *J* = 8.6 Hz, 1H), 7.64 – 7.56 (m, 2H), 7.51 (t, *J* = 7.4 Hz, 1H), 5.33 (d, *J* = 4.4 Hz, 1H), 3.94 – 3.83 (m, 4H), 3.35 (dd, *J* = 13.7, 6.9 Hz, 1H), 3.27 (dd, *J* = 12.8, 7.2 Hz, 2H), 2.30 (s, 1H), 1.69 (s, 3H), 0.99 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 175.6, 174.0, 172.9, 134.7, 134.4, 132.2, 128.3, 127.8, 127.5 (d, *J* = 15.9 Hz), 126.7,

124.6, 124.4, 66.9, 61.3, 54.4, 52.6, 46.8, 33.9, 24.0, 13.0.

(3aS,6S,6aR)-2-benzyl-6-(2-bromophenyl)-4,4-dimethyltetrahydropyrrolo[3,4-c]pyrrole-1,3(2H,3aH)-dione (6a)

White solid, 343 mg, 83% yield. ¹H NMR (300 MHz, CDCl₃) δ 7.59 – 7.52 (m, 1H), 7.27 (s, 7H), 7.11 (pd, *J* = 7.3, 4.0 Hz, 2H), 4.95 (d, *J* = 8.1 Hz, 1H), 4.49 (d, *J* = 2.6 Hz, 2H), 3.76 (t, *J* = 7.9 Hz, 1H), 2.90 (d, *J* = 7.8 Hz, 1H), 1.42 (s, 3H), 1.40 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 176.3, 174.9, 137.8, 136.0, 132.3, 129.0, 128.7, 128.4, 128.1, 127.7, 127.2, 124.1, 60.3, 59.8, 53.6, 47.6, 42.1, 29.0, 26.5.

(3aS,6S,6aR)-6-(2-bromophenyl)-2-cyclohexyl-4,4-dimethyltetrahydropyrrolo[3,4-c]pyrrole-1,3(2H,3aH)-dione (6c)

White solid, 332 mg, 82% yield. ¹H NMR (300 MHz, CDCl₃) δ 7.58 (dd, J = 7.8, 1.3 Hz, 1H), 7.48 (dd, J = 7.7, 1.5 Hz, 1H), 7.24 (dd, J = 7.6, 1.1 Hz, 1H), 7.15 (td, J = 7.6, 1.8 Hz, 1H), 4.94 (d, J = 8.0 Hz, 1H), 3.79 (ddd, J = 12.3, 8.4, 3.9 Hz, 1H), 3.68 (t, J = 7.9 Hz, 1H), 2.82 (d, J = 7.8 Hz, 1H), 2.04 (dd, J = 12.5, 3.5 Hz, 1H), 1.90 (dd, J = 12.5, 3.5 Hz, 1H), 1.73 (d, J = 12.9 Hz, 2H), 1.57 (d, J = 10.6 Hz, 2H), 1.45 (s, 3H), 1.40 (s, 3H), 1.32 – 1.05 (m, 3H). ¹³C NMR

(75 MHz, CDCl₃) δ 176.7, 175.3, 138.2, 132.3, 129.0, 128.1, 127.1, 124.2, 60.3, 59.8, 53.1, 51.6, 47.1, 29.1, 28.7 (d, *J* = 3.0 Hz), 26.5, 25.8 (d, *J* = 3.7 Hz), 24.9.

(3aS,6S,6aR)-6-(2-bromo-4-(trifluoromethyl)phenyl)-2-ethyl-4,4-dimethyltetrahydropyrrolo[3,4-c]pyrrole-1,3(2H,3aH)-dione (**6i**)

White solid, 314 mg, 75% yield. ¹H NMR (300 MHz, CDCl₃) δ 7.76 (d, J = 2.1 Hz, 1H), 7.70 (d, J = 8.3 Hz, 1H), 7.41 (dd, J = 8.3, 2.1 Hz, 1H), 4.98 (d, J = 8.3 Hz, 1H), 3.75 (t, J = 8.0 Hz, 1H), 3.43 – 3.29 (m, 2H), 2.88 (d, J = 7.8 Hz, 1H), 1.50 (s, 3H), 1.42 (s, 3H), 1.00 (t, J = 7.2 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 176.1, 174.9, 139.8, 132.8, 129.9, 129.5, 128.0, 125.7 (d, J = 3.9 Hz), 125.1 (d, J = 3.8 Hz), 122.1, 59.9 (d, J = 6.5 Hz), 53.2, 47.2, 33.5, 29.0, 26.4, 13.1.

7. Characterization of products 9, 10 and 11

Ethyl (8*R*,8*aS*,11*aR*,11*bS*)-8,10-dimethyl-5-methylene-9,11-dioxo-5,8,8*a*,9,10,11,11*a*,11*b*-octahydro-6*H*-pyrrolo-[3',4':3,4]pyrrolo[2,1-*a*]isoquinoline-8-carboxylate (**9a**)

Orange solid, 138 mg, 78% yield. ¹H NMR (300 MHz, CDCl₃) δ 7.66 (dd, J = 7.8, 1.3 Hz, 1H), 7.56 (d, J = 7.6 Hz, 1H), 7.31 (td, J = 7.5, 1.5 Hz, 1H), 7.25 (dt, J = 11.7, 3.9 Hz, 1H), 5.56 (d, J = 1.4 Hz, 1H), 4.97 (d, J = 1.2 Hz, 1H), 4.39 (d, J = 7.1 Hz, 1H), 4.30 – 4.22 (m, 1H), 4.21 – 4.11 (m, 1H), 3.70 (t, J = 7.4 Hz, 1H), 3.47 (d, J = 12.0 Hz, 1H), 3.24 – 3.16 (m, 2H), 2.82 (s, 3H), 1.46 (s, 3H), 1.29 (d, J = 7.2 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 175.5,

174.7, 171.3, 139.0, 132.3 (d, J = 4.9 Hz), 128.4, 127.0 (d, J = 13.5 Hz), 124.0, 108.4, 69.8, 62.0, 61.6, 54.4, 50.6, 45.6, 25.1, 14.6, 14.1. HRMS (ESI) calcd for C₂₀H₂₃N₂O₄ ([M+H]⁺): 355.1652, found 355.1655.

Ethyl (8*R*,8*aS*,11*aR*,11*bS*)-10-ethyl-8-methyl-5-methylene-9,11-dioxo-5,8,8*a*,9,10,11,11*a*,11*b*-octahydro-6*H*-pyrro-lo[3',4':3,4]pyrrolo[2,1-a]isoquinoline-8-carboxylate (**9b**)

Orange solid, 141 mg, 77% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.66 (d, J = 7.8 Hz, 1H), 7.55 (d, J = 7.6 Hz, 1H), 7.31 (t, J = 7.4 Hz, 1H), 7.27 – 7.22 (m, 1H), 5.55 (s, 1H), 4.96 (s, 1H), 4.39 (d, J = 7.0 Hz, 1H), 4.33 – 4.26 (m, 1H), 4.17 – 4.08 (m, 1H), 3.68 (t, J = 7.4 Hz, 1H), 3.47 (d, J = 11.9 Hz, 1H), 3.38 (q, J = 7.1 Hz, 2H), 3.22 – 3.14 (m, 2H), 1.46 (s, 3H), 1.29 (t, J = 7.1 Hz, 3H), 1.01 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 175.3, 174.5, 171.2, 139.1,

132.4 (d, *J* = 8.3 Hz), 128.4, 127.0, 126.8, 124.0, 108.2, 69.9, 61.9, 61.6, 54.3, 50.6, 45.6, 34.0, 14.7, 14.1, 12.7. HRMS (ESI) calcd for C₂₁H₂₅N₂O₄ ([M+H]⁺): 369.1809, found 369.1807.

Methyl (8*R*,8*a*S,11*aR*,11*b*S)-10-ethyl-8-methyl-5-methylene-9,11-dioxo-5,8,8*a*,9,10,11,11*a*,11*b*-octahydro-6*H*-pyrrolo[3',4':3,4]pyrrolo[2,1-*a*]isoquinoline-8-carboxylate (**9c**)

Orange solid, 141 mg, 80% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.66 (d, J = 7.4 Hz, 1H), 7.55 (d, J = 7.7 Hz, 1H), 7.31 (t, J = 6.9 Hz, 1H), 7.24 (d, J = 7.4 Hz, 1H), 5.57 (s, 1H), 4.98 (s, 1H), 4.39 (d, J = 7.0 Hz, 1H), 3.76 (s, 3H), 3.68 (t, J = 7.4 Hz, 1H), 3.48 (d, J = 12.0 Hz, 1H), 3.42 – 3.33 (m, 2H), 3.20 (d, J = 12.0 Hz, 1H), 3.16 (d, J = 7.7 Hz, 1H), 1.47 (s, 3H), 1.01 (t, J = 7.2 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 175.4, 174.4, 171.7, 138.9, 132.2 (d,

J = 8.8 Hz), 128.4, 126.9 (d, *J* = 18.0 Hz), 124.0, 108.4, 70.0, 62.0, 54.3, 52.6, 50.6, 45.5, 34.1, 14.6, 12.6. HRMS (ESI) calcd for C₂₀H₂₃N₂O₄ ([M+H]⁺): 355.1652, found 355.1655.

(8R,8aS,11aR,11bS)-10-benzyl-8-methyl-5-methylene-9,11-dioxo-5,8,8a,9,10,11,11a,11b-octahydro-6Hpyrrolo[3',4':3,4]pyrrolo[2,1-a]isoquinoline-8-carboxylate (9d)

Orange solid, 158 mg, 76% yield. ¹H NMR (300 MHz, CDCl₃) δ 7.65 (dd, J = 7.8, 1.2 Hz, 1H), 7.53 (d, J = 7.6 Hz, 1H), 7.32 – 7.23 (m, 2H), 7.18 (d, J = 4.4 Hz, 5H), 5.60 (s, 1H), 5.02 (s, 1H), 4.49 (d, J = 4.8 Hz, 2H), 4.41 (d, J = 7.3 Hz, 1H), 3.68 (t, J = 7.4 Hz, 1H), 3.58 (s, 3H), 3.52 (d, J = 11.8 Hz, 1H), 3.19 (dd, J = 9.6, 6.5 Hz, 2H), 1.46 (s, 3H). ¹³C NMR (75

MHz, CDCl₃) δ 175.2, 174.3, 171.7, 139.2, 135.2, 132.3 (d, *J* = 15.1 Hz), 128.4 (d, *J* = 8.7 Hz), 128.1, 127.5, 127.0 (d, *J* = 15.6 Hz), 124., 108.4, 70.1, 62.1, 54.3, 52.4, 50.6, 45.5, 42.4, 14.5. HRMS (ESI) calcd for C₂₅H₂₅N₂O₄ ([M+H]⁺): 417.1809, found 417.1804.

Methyl (8*R*,8*a*S,11*aR*,11*b*S)-8-*methyl*-5-*methylene*-9,11-*dioxo*-10-*phenyl*-5,8,8*a*,9,10,11,11*a*,11*b*-octahydro-6*H*-*pyrrolo*[3',4':3,4]*pyrrolo*[2,1-*a*]*isoquinoline*-8-*carboxylate* (**9e**)

Orange solid, 159 mg, 79% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.65 (dd, J = 7.9, 0.9 Hz, 1H), 7.54 (d, J = 7.7 Hz, 1H), 7.37 – 7.31 (m, 2H), 7.28 (t, J = 4.9 Hz, 2H), 7.23 (d, J = 7.4 Hz, 1H), 7.13 (dd, J = 5.5, 3.4 Hz, 2H), 5.57 (d, J = 1.1 Hz, 1H), 4.99 (d, J = 0.8 Hz, 1H), 4.45 (d, J = 6.7 Hz, 1H), 3.84 (dd, J = 7.6, 6.9 Hz, 1H), 3.76 (s, 3H), 3.50 (d, J = 12.0 Hz, 1H), 3.30 (d, J = 7.8 Hz, 1H), 3.25 (d, J = 11.9 Hz, 1H), 1.52 (s, 3H). ¹³C NMR (75 MHz, 1H), 3.90 (d, J = 7.8 Hz, 1H), 3.90 (d, J = 1.9 Hz, 1H), 3.90 (d, J = 7.8 Hz, 1H), 3.90 (d, J = 1.9 Hz, 1H), 3.90 (d, J = 7.8 Hz, 1H), 3.90 (d, J = 1.9 Hz, 1H), 3.90 (d, J = 7.8 Hz, 1H), 3.90 (d, J = 1.9 Hz, 1H), 3.90 (d, J = 7.8 Hz, 1H), 3.90 (d, J = 1.9 Hz, 1H), 3.90 (d, J = 7.8 Hz, 1H), 3.90 (d, J = 1.9 Hz, 1H), 1.52 (s, 3H). ¹³C NMR (75 MHz, 1H), 3.90 (d, J = 7.8 Hz, 1H), 3.90 (d, J = 1.9 Hz, 1H), 3.90 (d, J = 7.8 Hz, 1H), 3.90 (d, J = 1.9 Hz, 1H), 1.52 (s, 3H).

CDCl₃) δ 174.9, 173.8, 173.2, 171.8, 139.0, 132.2 (d, *J* = 4.9 Hz), 131.8, 128.9, 128.4 (d, *J* = 11.6 Hz), 126.9 (d, *J* = 8.3 Hz), 126.6, 124.0, 110.9, 108.4, 70.7, 62.1, 54.4, 53.5, 52.7, 50.5, 45.9, 14.9. HRMS (ESI) calcd for C₂₄H₂₃N₂O₄ ([M+H]⁺): 403.1652, found 403.1656.

Ethyl (8*R*,8*aS*,11*aR*,11*bS*)-10-cyclohexyl-8-methyl-5-methylene-9,11-dioxo-5,8,8*a*,9,10,11,11*a*,11*b*-octahydro-6*H*-pyrrolo[3',4':3,4]pyrrolo[2,1-a]isoquinoline-8-carboxylate (**9f**)

Orange solid, 154 mg, 73% yield. ¹H NMR (300 MHz, CDCl₃) δ 7.64 (dd, J = 7.8, 1.3 Hz, 1H), 7.54 – 7.49 (m, 1H),

7.30 (td, J = 7.5, 1.5 Hz, 1H), 7.26 – 7.20 (m, 1H), 5.52 (d, J = 1.0 Hz, 1H), 4.93 (s, 1H), 4.37 – 4.26 (m, 2H), 4.15 – 4.03 (m, 1H), 3.83 – 3.68 (m, 1H), 3.60 (dd, J = 7.6, 7.0 Hz, 1H), 3.47 – 3.41 (m, 1H), 3.17 (d, J = 11.8 Hz, 1H), 3.07 (d, J = 7.7 Hz, 1H), 2.01 – 1.87 (m, 2H), 1.70 (d, J = 10.4 Hz, 2H), 1.53 (dd, J = 7.1, 3.7 Hz, 2H), 1.44 (s, 3H), 1.27 (d, J = 7.2 Hz, 3H), 1.22 – 1.04 (m, 4H). ¹³C NMR (75 MHz, CDCl₃) δ 175.5, 174.8, 171.2, 139.4, 132.5 (d, J = 13.8

Hz), 128.4, 126.8 (d, J = 16.4 Hz), 124.0, 108.0, 70.0, 61.9, 61.4, 53.9, 51.9, 50.4, 45.2, 28.6, 28.3, 25.8 (d, J = 3.5 Hz), 24.9, 14.8, 14.1. HRMS (ESI) calcd for C₂₅H₃₁N₂O₄ ([M+H]⁺): 423.2278, found 423.2275.

Methyl (8*R*,8*a*S,11*aR*,11*b*S)-8,10-diethyl-5-methylene-9,11-dioxo-5,8,8*a*,9,10,11,11*a*,11*b*-octahydro-6*H*-pyrrolo-[3',4':3,4]pyrrolo[2,1-*a*]isoquinoline-8-carboxylate (**9g**)

Orange solid, 134 mg, 73% yield. ¹H NMR (300 MHz, CDCl₃) δ 7.62 (dd, J = 7.8, 1.3 Hz, 1H), 7.51 (d, J = 7.6 Hz, 1H), 7.32 – 7.21 (m, 2H), 5.50 (s, 1H), 4.96 (d, J = 0.9 Hz, 1H), 4.56 (d, J= 7.3 Hz, 1H), 3.74 (d, J = 11.5 Hz, 4H), 3.64 (t, J = 7.5 Hz, 1H), 3.44 – 3.31 (m, 3H), 3.26 (d, J = 7.7 Hz, 1H), 2.11 (dt, J = 14.3, 7.2 Hz, 1H), 1.93 – 1.79 (m, 1H), 1.14 (t, J = 7.4 Hz, 3H), 0.97 (t, J = 7.2 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 175.6, 174.5, 171.2, 139.3, 132.50 (d, J

= 16.5 Hz), 128.5, 126.85 (d, J = 17.8 Hz), 124.1, 108.0, 73.4, 61.9, 52.32 (d, J = 16.7 Hz), 51.4, 46.0, 34.0, 23.7, 12.7, 10.6. HRMS (ESI) calcd for C₂₁H₂₅N₂O₄ ([M+H]⁺): 369.1809, found 369.1813.

Ethyl(8R,8aS,11aR,11bS)-2-methoxy-8,10-dimethyl-5-methylene-9,11-dioxo-5,8,8a,9,10,11,-11a,11b-octahydro-6H-pyrrolo[3',4':3,4]pyrrolo[2,1-a]isoquinoline-8-carboxylate (9h)

Orange solid, 123 mg, 64% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.59 (d, J = 8.8 Hz, 1H), 7.09 (d, J = 2.0 Hz, 1H), 6.82 (dd, J = 8.8, 2.3 Hz, 1H), 5.42 (s, 1H), 4.86 (s, 1H), 4.36 (d, J = 7.2 Hz, 1H), 4.30 – 4.23 (m, 1H), 4.17 (dd, J = 10.7, 7.1 Hz, 1H), 3.87 (s, 3H), 3.69 (s, 1H), 3.46 (d, J = 12.0 Hz, 1H), 3.20 (s, 1H), 3.17 (d, J = 5.2 Hz, 1H), 2.83 (s, 3H), 1.46 (s, 3H), 1.29 (t, J = 7.1 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 175.4, 174.7, 171.3, 158.3, 138.6, 133.7, 125.25

(d, J = 11.7 Hz), 113.8, 112.9, 106.4, 69.8, 62.3, 61.6, 55.4, 54.4, 50.8, 45.6, 25.2, 14.6, 14.1. HRMS (ESI) calcd for $C_{21}H_{25}N_2O_5$ ($[M+H]^+$): 385.1758, found 385.1761.

Ethyl (8*R*,8*aS*,11*aR*,11*bS*)-10-benzyl-3,8-dimethyl-5-methylene-9,11-dioxo-5,8,8*a*,9,10,11,11*a*,11*b*-octahydro-6*H*-pyrrolo[3',4':3,4]pyrrolo[2,1-*a*]isoquinoline-8-carboxylate (**9i**)

Orange solid, 144 mg, 65% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.45 (s, 1H), 7.42 (d, J = 7.9 Hz, 1H), 7.18 (s, 5H), 7.12 (d, J = 7.9 Hz, 1H), 5.57 (s, 1H), 4.98 (s, 1H), 4.50 (s, 2H), 4.38 (d, J = 7.2 Hz, 1H), 4.25 – 4.17 (m, 1H), 3.96 (dq, J = 10.7, 7.1 Hz, 1H), 3.65 (t, J = 7.4 Hz, 1H), 3.50 (d, J = 11.7 Hz, 1H), 3.19 (s, 1H), 3.16 (d, J = 3.9 Hz, 1H), 2.33 (s, 3H), 1.45 (s, 3H), 1.16 (t, J = 7.1 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 175.1, 174.5, 171.2, 139.5, 136.5, 135.2,

132.3, 129.4, 128.35 (d, J = 5.2 Hz), 128.00 (d, J = 3.3 Hz), 127.5, 124.5, 107.9, 69.9, 62.0, 61.5, 54.4, 50.6, 45.6, 42.3, 29.7, 21.4, 14.5, 14.0. HRMS (ESI) calcd for C₂₇H₂₉N₂O₄ ([M+H]⁺): 445.2122, found 445.2127.

Methyl (8R,8aS,11aR,11bS)-10-benzyl-8-methyl-5-methylene-9,11-dioxo-2-(trifluoromethyl)-5,8,8a,9,10,11,11a,-11b-octahydro-6H-pyrrolo[3',4':3,4]pyrrolo[2,1-a]isoquinoline-8-carboxylate (9j)

Orange solid, 162 mg, 67% yield. ¹H NMR (300 MHz, CDCl₃) δ 7.81 (s, 1H), 7.74 (d, *J* = 8.3 Hz, 1H), 7.47 (d, *J* = 8.3 Hz, 1H), 7.18 (s, 5H), 5.69 (s, 1H), 5.15 (s, 1H), 4.50 (d, *J* = 2.3 Hz, 2H), 4.43 (d, *J* = 7.5 Hz, 1H), 3.73 (dd, *J* = 8.7, 6.2 Hz, 1H), 3.62 – 3.51 (m, 4H), 3.23 (d, *J* = 2.1 Hz, 1H), 3.20 (d, *J* = 6.6 Hz, 1H), 1.47 (s, 3H). ¹⁹F NMR (282 MHz, CDCl₃) δ -62.48 (s). ¹³C NMR (75 MHz, CDCl₃) δ 174.9, 173.9, 171.4, 138.2, 135.8, 135.0, 132.7, 128.69 (d, *J* = 6.6 Hz, 1H), 5.05 (d, *J* = 6.6 Hz, 1H), 5.15 (d, J = 6.6 Hz, 1H), 5.1

21.5 Hz), 128.4, 127.9, 127.5, 125.94 (d, J = 3.8 Hz), 124.6, 123.68 (d, J = 3.7 Hz), 110.7, 70.0, 61.9, 54.2, 52.5, 50.2, 45.2, 42.4, 29.7, 14.5. HRMS (ESI) calcd for C₂₆H₂₄F₃N₂O₄ ([M+H]⁺): 485.1683, found 485.1687.

Methyl(8*R*,8*aS*,11*aR*,11*bS*)-3-chloro-10-ethyl-8-methyl-5-methylene-9,11-dioxo-5,8,8*a*,9,10,11,-11*a*,11b-octahydro-6*H*-pyrrolo[3',4':3,4]pyrrolo[2,1-a]isoquinoline-8-carboxylate (**9k**)

Orange solid, 120 mg, 62% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.62 (s, 1H), 7.50 (d, *J* = 8.4 Hz, 1H), 7.28 (s, 1H), 5.56 (s, 1H), 5.03 (s, 1H), 4.33 (d, *J* = 7.0 Hz, 1H), 3.77 (s, 3H), 3.66 (t, *J* = 7.4 Hz, 1H), 3.49 (d, *J* = 12.0 Hz, 1H), 3.39 (dd, *J* = 14.1, 6.9 Hz, 2H), 3.17 (d, *J* = 7.9 Hz, 2H), 1.47 (s, 3H), 1.01 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 175.2, 174.3, 171.5, 137.9, 134.1, 133.0, 130.7, 129.9, 126.9, 124.0, 109.7, 70.0, 61.6, 54.2, 52.6, 50.3, 45.3, 34.1,

14.7, 12.7. HRMS (ESI) calcd for $C_{20}H_{22}ClN_2O_4$ ([M+H]⁺): 389.1263, found 389.1260.

Methyl (8*R*,8*aS*,11*aR*,11*bS*)-10-benzyl-8-methyl-5-methylene-9,11-dioxo-5,8,8*a*,9,10,11,11*a*,11b-octahydro-6*H*-[1,3]dioxolo[4,5-g]pyrrolo[3',4':3,4]pyrrolo[2,1-a]isoquinoline-8-carboxylate (91)

Orange solid, 138 mg, 60% yield. ¹H NMR (300 MHz, DMSO) δ 7.24 – 7.20 (m, 2H), 7.19 (d, J = 1.8 Hz, 2H), 7.13 (dd, J = 7.0, 2.6 Hz, 2H), 7.07 (s, 1H), 6.00 (d, J = 6.5 Hz, 2H), 5.49 (s, 1H), 4.88 (s, 1H), 4.47 (d, J = 15.5 Hz, 1H), 4.37 (d, J = 15.5 Hz, 1H), 4.29 (d, J = 7.1 Hz, 1H), 3.97 (t, J = 7.3 Hz, 1H), 3.47 (s, 3H), 3.38 (d, J = 3.4 Hz, 2H), 3.07 (d, J = 11.9 Hz, 1H), 1.37 (s, 3H). ¹³C NMR (75 MHz, DMSO) δ 176.0, 175.5, 171.9, 146.8, 146.6, 139.8, 135.9, 128.6, 128.1, 127.4 (d, J = 11.0 Hz), 126.5, 109.0, 107.2, 103.6, 101.4, 70.0, 61.8, 54.5, 52.4, 50.4,

45.9, 41.6, 14.9. HRMS (ESI) calcd for $C_{26}H_{25}N_2O_6$ ([M+H]⁺): 461.1707, found 461.1703.

Methyl(10*R*, 10*a*S, 13*aR*, 13*b*S)-12-ethyl-10-methyl-7-methylene-11, 13-dioxo-7, 10, 10*a*, 11, 12, -13, 13*a*, 13*b*-octahydro-8*H*-benzo[*h*]pyrrolo[3',4':3,4]pyrrolo[2, 1-*a*]isoquinoline-10-carboxylate (**9m**)

Orange solid, 141 mg, 70% yield. ¹H NMR (300 MHz, CDCl₃) δ 8.56 – 8.47 (m, 1H), 7.87 – 7.80 (m, 1H), 7.77 (d, J = 8.5 Hz, 1H), 7.59 (d, J = 8.5 Hz, 1H), 7.49 – 7.40 (m, 2H), 5.64 (s, 1H), 5.51 (s, 1H), 4.51 (d, J = 6.6 Hz, 1H), 3.78 (s, 3H), 3.75 – 3.67 (m, 1H), 3.50 (d, J = 10.3 Hz, 1H), 3.38 (q, J = 7.2 Hz, 2H), 3.29 (d, J = 10.3 Hz, 1H), 3.15 (d, J = 7.5 Hz, 1H), 1.47 (s, 3H), 0.99 (t, J = 7.2 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 175.6, 174.8, 171.8,

 $138.2, 133.4, 130.71 - 130.21 \text{ (m)}, 128.6, 126.9, 126.1, 125.8 - 125.2 \text{ (m)}, 116.9, 70.2, 62.7, 54.2, 52.5 \text{ (d}, J = 2.7 \text{ Hz}), 45.7, 34.0, 14.7, 12.7. \text{ HRMS (ESI) calcd for } C_{24}H_{25}N_2O_4 ([M+H]^+): 405.1809, \text{ found } 405.1814.$

(8aS,11aR,11bS)-10-benzyl-8,8-dimethyl-5-methylene-5,6,8,8a,11a,11b-hexahydro-9H-pyrrolo[3',4':3,4]pyrrolo[2,1-a]isoquinoline-9,11(10H)-dione (**11a**)

Orange solid, 139 mg, 75% yield. ¹H NMR (300 MHz, CDCl₃) & 7.66 (dd, *J* = 7.8, 1.1 Hz, 1H), 7.51 (d, *J* = 7.6 Hz, 1H), 7.29 (dd, *J* = 7.6, 1.4 Hz, 1H), 7.25 (dd, *J* = 5.5, 2.5 Hz, 1H), 7.22 – 7.17 (m, 5H), 5.57 (s, 1H), 5.00 (s, 1H), 4.55 (d, *J* = 14.5 Hz, 1H), 4.46 (d, *J* = 14.5 Hz, 1H), 4.36 (d, *J* = 6.5 Hz, 1H), 3.67 – 3.58 (m, 1H), 3.49 (d, *J* = 12.0 Hz, 1H), 3.14 (d, *J* = 11.9 Hz, 1H), 2.93 (d, *J* = 7.6 Hz, 1H), 1.26 (s, 3H), 1.14 (s, 3H). ¹³C NMR (75 MHz,

CDCl₃) δ 176.2, 175.3, 140.2, 135.6, 133.2, 132.4, 128.4, 128.1, 127.5, 126.9 (d, *J* = 1.3 Hz), 124.0, 107.8, 62.4, 61.9 53.9, 49.1, 46.0, 42.1, 24.1, 19.6. HRMS (ESI) calcd for C₂₄H₂₅N₂O₂ ([M+H]⁺): 373.1911, found 373.1914.

(8aS,11aR,11bS)-8,8-dimethyl-5-methylene-10-phenyl-5,6,8,8a,11a,11b-hexahydro-9H-pyrrolo[3',4':3,4]pyrrolo[2,1a]isoquinoline-9,11(10H)-dione (11b)

Orange solid, 140 mg, 78% yield. ¹H NMR (300 MHz, CDCl₃) δ 7.64 (dd, *J* = 7.8, 1.3 Hz, 1H), 7.54 – 7.49 (m, 1H), 7.37 – 7.21 (m, 5H), 7.18 – 7.13 (m, 2H), 5.55 (d, *J* = 1.2 Hz, 1H), 4.99 (d, *J* = 1.1 Hz, 1H), 4.39 (d, *J* = 6.1 Hz, 1H), 3.78 (dd, *J* = 7.6, 6.3 Hz, 1H), 3.54 (d, *J* = 12.2 Hz, 1H), 3.18 (d, *J* = 12.0 Hz, 1H), 3.07 (d, *J* = 7.7 Hz, 1H), 1.42 (s, 3H), 1.21 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 175.8, 174.6, 140.0, 133.2, 132.3, 131.8, 128.9, 128.3 (d, *J* = 1.2 Hz, 1H), 3.18 (d, *J* = 1.2 Hz, 144, 5.55 (d, *J* = 1.2 Hz, 144), 3.54 (d, *J* = 1.2 Hz, 144), 3.55 (d, *J* = 1.2 Hz, 144), 3.54 (d, *J* = 1.2 Hz, 144), 3.55 (d, *J* = 1.2 Hz, 144), 3.54 (d, *J* = 1.2 Hz, 144), 3.55 (d, *J* = 1.2 Hz, 144), 3.55 (d, *J* = 1.2 Hz, 144), 3.54 (d, *J* = 1.2 Hz, 144), 3.55 (d, J = 1.2 Hz, 144)

3.5 Hz), 126.9 (d, *J* = 5.8 Hz), 126.5, 123.9, 107.8, 62.6, 62.4, 54.0, 49.4, 46.2, 45.2, 24.5, 20.1. HRMS (ESI) calcd for C₂₃H₂₃N₂O₂ ([M+H]⁺): 359.1754, found 359.1757.

(8aS,11aR,11bS)-10-cyclohexyl-8,8-dimethyl-5-methylene-5,6,8,8a,11a,11b-hexahydro-9H-pyrrolo[3',4':3,4]pyrrolo[2,1-a]isoquinoline-9,11(10H)-dione (11c)

Orange solid, 131 mg, 72% yield. ¹H NMR (300 MHz, CDCl₃) δ 7.65 (d, *J* = 7.5 Hz, 1H), 7.48 (d, *J* = 7.5 Hz, 1H), 7.27 (ddd, *J* = 18.4, 10.9, 6.6 Hz, 2H), 5.53 (s, 1H), 4.95 (s, 1H), 4.28 (d, *J* = 6.0 Hz, 1H), 3.79 (tt, *J* = 12.3, 3.7 Hz, 1H), 3.55 (dd, *J* = 7.4, 6.3 Hz, 1H), 3.46 (d, *J* = 12.1 Hz, 1H), 3.13 (d, *J* = 12.1 Hz, 1H), 2.83 (d, *J* = 7.6 Hz, 1H), 2.14 – 1.89 (m, 2H), 1.71 (d, *J* = 11.0 Hz, 2H), 1.55 (d, *J* = 6.9 Hz, 1H), 1.44 (d, *J* = 12.1 Hz, 2H), 1.29 (s,

3H), 1.21 – 1.06 (m, 6H). ¹³C NMR (75 MHz, CDCl₃) δ 176.9, 175.8, 140.2, 133.6, 132.2, 128.2, 126.8, 123.9, 107.6, 62.4, 61.9, 53.6, 51.6, 49.3, 45.7, 29.0, 28.3, 25.8 (d, *J* = 3.5 Hz), 25.0, 24.2, 20.2. HRMS (ESI) calcd for C₂₃H₂₉N₂O₂ ([M+H]⁺): 365.2224, found 365.2222.

(8aS, 11aR, 11bS)-10-ethyl-3,8,8-trimethyl-5-methylene-5,6,8,8a, 11a, 11b-hexahydro-9Hpyrrolo[3',4':3,4]pyrrolo[2,1-a]isoquinoline-9,11(10H)-dione (**11d**)

Orange solid, 118 mg, 73% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.46 (s, 1H), 7.41 (d, J = 7.8 Hz, 1H), 7.13 (d, J = 7.8 Hz, 1H), 5.53 (s, 1H), 4.94 (s, 1H), 4.26 (d, J = 6.0 Hz, 1H), 3.59 (t, J = 6.8 Hz, 1H), 3.46 (d, J = 12.1 Hz, 1H), 3.42 – 3.30 (m, 2H), 3.11 (d, J = 12.0 Hz, 1H), 2.90 (d, J = 7.5 Hz, 1H), 2.35 (s, 3H), 1.31 (s, 3H), 1.14 (s, 3H), 1.02 (t, J = 7.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 176.5, 175.6, 140.2, 136.2, 132.0, 130.6, 128.2, 127.9, 124.3, 107.5, 62.2,

61.8, 53.9, 49.4, 46.0, 33.6, 24.3, 21.4, 19.9, 12.9. HRMS (ESI) calcd for $C_{20}H_{25}N_2O_2$ ([M+H]⁺): 325.1911, found 325.1914.

(8aS,11aR,11bS)-10-benzyl-3,8,8-trimethyl-5-methylene-5,6,8,8a,11a,11b-hexahydro-9Hpyrrolo[3',4':3,4]pyrrolo[2,1-a]isoquinoline-9,11(10H)-dione (**11e**)

Orange solid, 135 mg, 70% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.46 (s, 1H), 7.40 (d, *J* = 7.9 Hz, 1H), 7.20 (s, 5H), 7.13 (d, *J* = 7.8 Hz, 1H), 5.55 (s, 1H), 4.98 (s, 1H), 4.55 (d, *J* = 14.5 Hz, 1H), 4.46 (d, *J* = 14.5 Hz, 1H), 4.31 (d, *J* = 6.4 Hz, 1H), 3.60 (t, *J* = 7.0 Hz, 1H), 3.47 (d, *J* = 12.0 Hz, 1H), 3.11 (d, *J* = 11.9 Hz, 1H), 2.91 (d, *J* = 7.5 Hz, 1H), 2.34 (s, 3H), 1.26 (s, 3H), 1.13 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 176.3, 175.4, 140.4, 136.3, 135.7, 132.2, 130.4,

128.2 (dd, J = 25.0, 11.9 Hz), 127.5, 124.4, 107.5, 62.3, 61.9, 53.9, 49.2, 46.1, 42.1, 24.2, 21.4, 19.6. HRMS (ESI) calcd for C₂₅H₂₇N₂O₂ ([M+H]⁺): 387.2067, found 387.2071.

(8aS, 11aR, 11bS)-2-methoxy-8,8,10-trimethyl-5-methylene-5,6,8,8a,11a,11b-hexahydro-9H-pyrrolo[3',4':3,4]pyrrolo[2,1-a]isoquinoline-9,11(10H)-dione (**11f**)

Orange solid, 115 mg, 71% yield. ¹H NMR (300 MHz, CDCl₃) δ 7.59 (d, *J* = 8.8 Hz, 1H), 7.05 (d, *J* = 2.2 Hz, 1H), 6.80 (dd, *J* = 8.8, 2.3 Hz, 1H), 5.42 (d, *J* = 1.2 Hz, 1H), 4.86 (d, *J* = 1.1 Hz, 1H), 4.27 (d, *J* = 6.6 Hz, 1H), 3.86 (s, 3H), 3.62 (t, *J* = 7.2 Hz, 1H), 3.47 (d, *J* = 12.2 Hz, 1H), 3.11 (d, *J* = 12.2 Hz, 1H), 2.94 (d, *J* = 7.7 Hz, 1H), 2.82 (s, 3H), 1.33 (s, 3H), 1.14 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 176.6, 175.6, 158.4, 139.5, 134.7, 125.1 (d, *J* = 10.0 Hz),

 $113.6,\,112.9,\,105.8,\,62.7,\,61.8,\,55.4,\,54.0,\,49.5,\,45.8,\,24.8,\,24.3,\,19.6.\ HRMS\ (ESI)\ calcd\ for\ C_{19}H_{23}N_2O_3\ ([M+H]^+):\,327.1703,\,found\ 327.1701.$

(8aS, 11aR, 11bS)-10-ethyl-2-methoxy-8,8-dimethyl-5-methylene-5,6,8,8a, 11a, 11b-hexahydro-9Hpyrrolo[3',4':3,4]pyrrolo[2,1-a]isoquinoline-9,11(10H)-dione (**11g**)

Orange solid, 115 mg, 68% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.59 (d, *J* = 8.8 Hz, 1H), 7.04 (d, *J* = 2.3 Hz, 1H), 6.81 (dd, *J* = 8.8, 2.5 Hz, 1H), 5.40 (s, 1H), 4.85 (s, 1H), 4.28 (d, *J* = 6.5 Hz, 1H), 3.86 (s, 3H), 3.60 (t, *J* = 7.1 Hz, 1H), 3.46 (d, *J* = 12.2 Hz, 1H), 3.39 (q, *J* = 7.1 Hz, 2H), 3.11 (d, *J* = 12.1 Hz, 1H), 2.91 (d, *J* = 7.7 Hz, 1H), 1.32 (s, 3H), 1.15 (s, 3H), 1.03 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 176.4, 175.3, 158.4, 139.6, 134.7, 125.2, 113.4, 112.9, 105.6,

 $62.6, 61.8, 55.4, 53.9, 49.5, 45.9, 33.7, 24.3, 19.8, 12.9. \ \text{HRMS} \ \text{(ESI)} \ \text{calcd for} \ C_{20}H_{25}N_2O_3 \ ([M+H]^+): 341.1860, \ \text{found} 341.1864.$

(8aS,11aR,11bS)-10-cyclohexyl-2-methoxy-8,8-dimethyl-5-methylene-5,6,8,8a,11a,11b-hexahydro-9H-pyrrolo[3',4':3,4]pyrrolo[2,1-a]isoquinoline-9,11(10H)-dione (**11h**)

Orange solid, 128 mg, 65% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.58 (d, J = 8.8 Hz, 1H), 6.99 (s, 1H), 6.81 (d, J = 8.6 Hz, 1H), 5.38 (s, 1H), 4.84 (s, 1H), 4.25 (d, J = 6.0 Hz, 1H), 3.85 (s, 3H), 3.79 (t, J = 12.3 Hz, 1H), 3.53 (t, J = 6.8 Hz, 1H), 3.43 (d, J = 12.1 Hz, 1H), 3.11 (d, J = 12.1 Hz, 1H), 2.82 (d, J = 7.6 Hz, 1H), 2.03 (dq, J = 36.3, 12.1 Hz, 2H), 1.72 (d, J = 10.7 Hz, 2H), 1.55 (d, J = 11.2 Hz, 1H), 1.46 (d, J = 11.8 Hz, 2H), 1.29 (s, 3H), 1.20 (s,

1H), 1.13 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 176.8, 175.6, 158.3, 139.8, 134.9, 125.2, 113.4, 112.7, 105.5, 62.6, 61.9, 55.3, 53.5, 51.6, 49.4, 45.6, 29.0, 28.4, 25.8 (d, *J* = 3.2 Hz), 25.0, 24.2, 20.1. HRMS (ESI) calcd for C₂₄H₃₁N₂O₃ ([M+H]⁺): 395.2329, found 395.2327.

(8aS, 11aR, 11bS)-10-ethyl-8,8-dimethyl-5-methylene-3-(trifluoromethyl)-5,6,8,8a,11a,11b-hexahydro-9H-pyrrolo[3',4':3,4]pyrrolo[2,1-a]isoquinoline-9,11(10H)-dione (**11i**)

Orange solid, 136 mg, 72% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.81 – 7.72 (m, 2H), 7.47 (d, J = 8.3 Hz, 1H), 5.64 (s, 1H), 5.10 (s, 1H), 4.32 (d, J = 6.3 Hz, 1H), 3.65 (t, J = 7.0 Hz, 1H), 3.52 (d, J = 12.3 Hz, 1H), 3.39 (q, J = 7.1 Hz, 2H), 3.15 (d, J = 12.2 Hz, 1H), 2.94 (d, J = 7.6 Hz, 1H), 1.33 (s, 3H), 1.17 (s, 3H), 1.03 (t, J = 7.2 Hz, 3H). ¹⁹F NMR (282 MHz, CDCl₃) δ - 62.52 (s). ¹³C NMR (101 MHz, CDCl₃) δ 176.2, 175.1, 139.0, 133.9, 124.4, 123.4, 110.1, 62.2, 61.9, 53.8, 53.4, 49.0, 45.6, 33.7, 29.7, 24.2, 19.8, 12.9. HRMS (ESI) calcd for C₂₀H₂₂F₃N₂O₂

([M+H]⁺): 379.1628, found 379.1631.

Ethyl (8R,8aS,11aR,11bS)-5-((E)-benzylidene)-10-ethyl-8-methyl-9,11-dioxo-5,8,8a,9,10,11,11a,-11b-octahydro-6H-pyrrolo[3',4':3,4]pyrrolo[2,1-a]isoquinoline-8-carboxylate (**12a**)

Orange solid, 122 mg, 55% yield. ¹H NMR (300 MHz, CDCl₃) δ 7.76 – 7.68 (m, 1H), 7.60 – 7.53 (m, 1H), 7.32 (dd, *J* = 9.7, 4.3 Hz, 4H), 7.22 (dd, *J* = 10.2, 4.4 Hz, 3H), 7.14 (s, 1H), 4.44 (d, *J* = 6.9 Hz, 1H), 4.00 – 3.89 (m, 2H), 3.85 – 3.75 (m, 1H), 3.68 (t, *J* = 7.3 Hz, 1H), 3.36 (q, *J* = 7.2 Hz, 2H), 3.13 (t, *J* = 11.2 Hz, 2H), 1.46 (s, 3H), 1.00 (t, *J* = 7.2 Hz, 3H), 0.78 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 175.2, 174.7, 171.3, 137.2, 133.6,

133.2, 132.6, 129.1, 128.4 (d, J = 18.8 Hz), 127.0 (d, J = 19.1 Hz), 126.6, 124.2, 123.9, 70.1, 61.7, 61.4, 54.2, 45.7, 45.3, 34.0, 14.8, 13.4, 12.7. HRMS (ESI) calcd for C₂₇H₂₉N₂O₄ ([M+H]⁺): 445.2122, found 445.2126.

Ethyl (8*R*,8*aS*,11*aR*,11*bS*)-10-benzyl-5-((*E*)-benzylidene)-8-methyl-9,11-dioxo-5,8,8*a*,9,10,11,11*a*,-11b-octahydro-6*H*-pyrrolo[3',4':3,4]pyrrolo[2,1-a]isoquinoline-8-carboxylate (**12b**)

Bn = N O Dn = 12b CO_2Et Dn = 1H Ph J = 12bHz

Orange solid, 142 mg, 56% yield. ¹H NMR (300 MHz, CDCl₃) δ 7.72 (dd, J = 7.7, 1.5 Hz, 1H), 7.55 (dd, J = 7.1, 1.3 Hz, 1H), 7.37 – 7.22 (m, 7H), 7.19 (d, J = 7.2 Hz, 6H), 4.48 (d, J = 3.7 Hz, 3H), 4.03 (d, J = 11.9 Hz, 1H), 3.84 (dq, J = 10.7, 7.1 Hz, 1H), 3.67 (t, J = 7.4 Hz, 1H), 3.56 (dq, J = 10.7, 7.2 Hz, 1H), 3.15 (dd, J = 10.0, 5.5 Hz, 2H), 1.46 (s, 3H), 0.60

(t, J = 7.2 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 174.9, 174.5, 171.2, 137.2, 135.2, 133.8, 133.4, 132.4, 129.1, 128.4 (t, J = 10.8 Hz), 127.9, 127.4 (d, J = 12.9 Hz), 127.0, 126.7, 124.4, 123.8, 70.2, 61.9, 61.4, 54.2, 45.6, 45.2, 42.2, 14.5, 13.2. HRMS (ESI) calcd for C₃₂H₃₁N₂O₄ ([M+H]⁺): 507.2278, found 507.2278.

(8aS, 11aR, 11bS)-10-benzyl-5-((E)-benzylidene)-8,8-dimethyl-5,6,8,8a, 11a, 11b-hexahydro-9Hpyrrolo[3',4':3,4]pyrrolo[2,1-a]isoquinoline-9,11(10H)-dione (**12c**)

Orange solid, 116 mg, 52% yield. ¹H NMR (300 MHz, CDCl₃) δ 7.76 – 7.71 (m, 1H), 7.54 (dd, J = 7.1, 1.2 Hz, 1H), 7.41 – 7.31 (m, 3H), 7.27 (ddd, J = 10.6, 6.1, 2.4 Hz, 5H), 7.18 (t, J = 2.2 Hz, 5H), 4.55 (d, J = 14.5 Hz, 1H), 4.46 (d, J = 12.9 Hz, 1H), 4.42 (d, J = 4.8 Hz, 1H), 4.03 (d, J = 12.3 Hz, 1H), 3.69 – 3.59 (m, 1H), 3.09 (d, J = 12.6 Hz, 1H), 2.92 (d, J = 7.6 Hz, 1H), 1.15 (s, 3H), 1.12 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 176.2, 175.4,

137.4, 135.6, 134.1, 133.7, 133.4, 129.2, 128.7 - 128.2 (m), 128.1, 127.5, 127.2 - 126.5 (m), 124.1, 123.2, 62.2 (d, J = 10.8 Hz), 53.9, 46.1, 43.8, 42.1, 24.1, 19.8. HRMS (ESI) calcd for $C_{30}H_{29}N_2O_2$ ([M+H]⁺): 449.2224, found 449.2227.

(8aS,11aR,11bS)-5-((E)-benzylidene)-3-chloro-8,8-dimethyl-10-phenyl-5,6,8,8a,11a,11b-hexahydro-9H-pyrrolo[3',4':3,4]pyrrolo[2,1-a]isoquinoline-9,11(10H)-dione (**12d**)

Orange solid, 117 mg, 50% yield. ¹H NMR (300 MHz, CDCl₃) δ 7.68 (d, *J* = 2.0 Hz, 1H), 7.46 (d, *J* = 8.4 Hz, 1H), 7.36 (dd, *J* = 7.2, 4.3 Hz, 3H), 7.31 – 7.21 (m, 6H), 7.13 (dd, *J* = 5.3, 3.1 Hz, 3H), 4.36 (d, *J* = 6.1 Hz, 1H), 4.05 (d, *J* = 12.5 Hz, 1H), 3.73 (dd, *J* = 7.7, 6.2 Hz, 1H), 3.10 (d, *J* = 13.5 Hz, 1H), 3.04 (d, *J* = 7.8 Hz, 1H), 1.25 (s, 3H), 1.20 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 175.6, 174.6, 136.9, 135.5, 132.8 (d, *J* = 13.1 Hz), 131.8 (d, *J* = 6.4 Hz), 129.9, 129.2, 128.9, 128.4, 127.2, 126.5 (d, *J* = 14.8 Hz), 124.5, 123.9,

62.6, 62.1, 53.9, 46.2, 44.0, 24.4, 20.1. HRMS (ESI) calcd for C₂₉H₂₆ClN₂O₂ ([M+H]⁺): 469.1677, found 469.1680.

9. ¹H NMR, ¹³C NMR and ¹⁹F NMR of products 9-12

