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Computations
Chemical and physical properties (such as frontier molecular orbitals, heats of formation, energetic properties and bond dissociation energies) of the designed compounds were performed on Gaussian 16 program 1 using density functional theory (DFT) method at B3LYP/6-311G(d,p) level. Gas-phase heats of formation (ΔHf,gas) of were predicted by the following isodesmic reactions (Scheme S1) combined with (equations 1 and 2)2-4.

[image: image1.emf]NO

2

NH

2

NHNO

2

NHNH

2

R=

CN

N

3

CH(NO

2

)

2

C(NO

2

)

3

A

B

C

D

E

F

G

H

++

CH

3

CH

2

CH

2

CH

3

+CH

3

R

+

+

CH

3

CH=CHCH

3

+CH

3

R

++

CH

3

NHNHCH

3

+

CH

3

R

+

CH

3

N=NCH

3

+

CH

3

R

N

NN

N

H

2

CC

H

2

N

O

N

R

R

N

NN

N

H

CC

H

N

O

N

R

R

N

NN

N

H

NN

H

N

O

N

R

R

N

NN

N

NN

N

O

N

R

R

+

N

ON

N

ON

N

ON

N

ON

N

NN

H

N

+

N

NN

H

N

+

N

NN

H

N

+

N

NN

H

N

+

+

NH

2

R

+

NH

2

R

+

NH

2

R

+

NH

2

R

CH

4

3

+

NH

3

CH

4

3

+

NH

3

CH

4

3

+

NH

3

CH

4

3

+

NH

3

++

CH

3

CH

2

NHCH

3

+CH

3

R

+

+

CH

3

CH=NCH

3

+CH

3

R

++

+

CH

3

R

+

+

CH

3

R

N

NN

N

H

2

CN

H

N

O

N

R

R

N

NN

N

H

CN

N

O

N

R

R

N

NN

N

H

NC

H

2

N

O

N

R

R

N

NN

N

NC

H

N

O

N

R

R

+

N

ON

N

ON

N

ON

N

ON

N

NN

H

N

+

N

NN

H

N

+

N

NN

H

N

+

N

NN

H

N

+

+

NH

2

R

+

NH

2

R

+

NH

2

R

+

NH

2

R

CH

4

3

+

NH

3

CH

4

3

+

NH

3

CH

4

3

+

NH

3

CH

4

3

+

NH

3

CH

3

CH

2

NHCH

3

CH

3

CH=NCH

3


Scheme S1 The designed isodesmic reactions for the designed compounds
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∆Hf,p and ∆Hf,R were presented as heats of formation of the products and reactants; ΔE0 were energy changes between products and reactants; ΔZPE were difference between the zero-point energy (ZPE) of products and reactants; ΔHT were thermal correction from 0 to298 K; n was the number of the energetic groups; ∆(PV) equals to ∆nRT.

Atomization reactions (CaHbNc→aC(g)+bH(g)+cN(g)) were employed to calculated the ΔHf,gas of these unknown small molecules at CBS-Q level.5 But for compounds CH3CH(NO2)2, CH3C(NO2)3, NH2CH(NO2)2 and NH2C(NO2)3, isodesmic reactions were employed: 

             CH3CH(NO2)2 +2CH4→CH3CH3+2CH3NO2
             CH3C(NO2)3 +3CH4→CH3CH3+3CH3NO2

NH2CH(NO2)2 +2CH4→CH3NH2+2CH3NO2
             NH2C(NO2)3 +3CH4→CH3NH2+3CH3NO2
The related parameters were summarized in Table S1.
Table S1. Calculated total energies (E0), zero-point energies (ZPE), thermal corrections (HT) and heats of formation (HOFs) of the reference compounds

	Compound.
	E0 (a.u.)a
	ZPE (kJ mol-1)a
	HT (kJ mol-1)a
	ΔHf,gas (kJ mol-1)

	NH3
	-56.576035
	90.1
	10.0
	-45.9b

	CH4
	-40.533748
	117.0
	10.0
	-74.6b

	CH3NHNH2
	-151.217035
	213.0
	14.3
	94.5b

	CH3NH2
	-95.888444
	167.6
	11.4
	-23.5b

	CH3NHNO2
	-300.434462
	176.5
	16.0
	-8.5c

	CH3NO2
	-245.081687
	130.6
	13.9
	-81.0b

	CH3CN
	-132.793330
	118.7
	11.9
	74.0b

	CH3N3
	-204.148401
	131.7
	14.2
	289.9c

	NH2NHNH2
	-167.241789
	184.7
	13.4
	206.8c

	NH2NH2
	-111.901535
	139.9
	11.1
	95.4b

	NH2NHNO2
	-316.445860
	146.7
	15.5
	119.1c

	NH2NO2
	-261.110946
	100.1
	11.7
	-6.4c

	NH2CN
	-148.829415
	89.5
	11.9
	140.8c

	NH2N3
	-220.158873
	101.8
	14.0
	416.3c

	CH3CH2CH2CH3
	-158.504982
	345.1
	17.7
	-125.6b

	CH3CH=CHCH3
	-157.273161
	282.0
	16.9
	-10.7b

	CH3NHNHCH3
	-190.535853
	286.9
	17.1
	109.3c

	CH3N=NCH3
	-189.328011
	220.6
	16.0
	160.5c

	CH3CH(NO2)2
	-488.950712
	212.3
	22.8
	81.8d

	CH3CH2NHCH3
	-174.532994
	316.1
	17.3
	-40.0c

	CH3CH=NCH3
	-173.315480
	251.4
	16.4
	40.0c

	CH3C(NO2)3
	-693.479196
	215.6
	29.3
	105.1d

	NH2CH(NO2)2
	-504.995416
	182.9
	22.8
	-73.7d

	NH2C(NO2)3
	-709.522642
	185.2
	29.4
	-34.5d
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	-262.112125
	119.6
	11.6
	197.4c
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	-258.316876
	123.0
	11.6
	321.1b


a, calculated at B3LYP/ 6-311G (d,p) level; b, obtained from http://webbook.nist.gov; c, calculated values were calculated at the CBS-Q level; d, obtained by isodesmic reaction.

Since most of the energetic compounds presents in solid phase rather than gas phase, solid-phase HOFs (ΔHf,solid) were calculated according to Hess's law and equation 3.6
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where, ΔHsub is the heat of sublimation. ΔHsub is the sublimation enthalpy which can be calculated by equation 4.7
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where, a, b and c were coefficients according to the reference;8 A was the surface area of the 0.001 e bohr-3 isosurface of electronic density of the molecule; ν was the degree of balance between positive and negative potential on the isosurface;
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 was the measure of variability of the electrostatic potential on the molecular surface.

The detonation velocities (D) and detonation pressures (P) of the designed compounds were calculated according to Kamlet-Jacobs equations (equation 5 and 6).9

[image: image9.wmf]0.5

0.50.5

1.01()(11.3)

DNMQ

ρ

=+

                             (5)


[image: image10.wmf]0.5

0.5

2

=1.558

P

ρ

NMQ

                                   (6)

where, N was the mole of detonation gases per-gram explosive (mol g-1),
[image: image11.wmf]M

was average molecular weight of these gases (g mol-1), Q was heat of detonation (cal g-1) and ρ was the density. Also, accurate densities can be obtained by an improved equation (equation 7) proposed by Politzer et al.10
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Where, β1, β2, and β3 were coefficients, M was the molecular mass (g mol-1), V was the volume of a molecule (m3 mol-1).

Bond dissociation energies (BDEs) of the designed compounds were also predicted according to equation (8) and (9).  

               BDE0(A–B)=E0(A·)+E0(B·)–E0(A–B)                (8)

               BDE(A–B)ZPE = BDE0(A–B) + ΔEZPE                 (9)

where E0(A·), E0(B·) and E0(A–B) were the energy of A·, B· and A–B; ΔEZPE was the difference between the ZPEs of the products and the reactants.
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