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Theoretical Model20

(a) Deposited folded edges21

We will consider a continuum model for the folded edges depicted in figure 2 of the main text,22

which shows folded edges in graphene obtained through MD simulations detailed below. We mod-23

eled such folded edge as a half tube of radius R0connected to a structure we call half-soliton (two24

arcs of radius r0[1]). Within this model, we considered that: (i) the folded edges are formed dur-25

ing the exfoliation process from material detached from the layered precursor, then the relevant26

quantity is the energy of adhesion instead of the energy of separation; (ii) We have considered the27

reference (zero) energy the situation where the 2D material lies straight, deposited on a substrate.28

Thus, can write the energy to form folded edges as composed of two terms:29

• Eadhesion = αL(πR0 + 2θ0r0), which accounts for the energy cost to detach from a precursor30

layered material, the amount of 2D material required to form the folded edge, i. e., ribbons of31

length L whose widths are πR0 e 2θ0r0, respectively.32

• Ebending =
∫

κds
R2

0
+ 2

∫
κds′

r2
0
= L κ

2 ( π
R0
+ 2θ

r0
), which refers to the energy necessary to bend33

ribbons of length L and widths πR0 and 2θr0 in the form or arc circles.34

α is the adhesion energy per unit area between layers of the 2D material, and κ is the bending stiff-35

ness of the 2D material. Then, energy to form the folded edge per unit of length is:36

ε =
Eadhesion + Ebending

L
= α(πR0 + 2θ0r0) +

κ

2

(
π

R0
+

2θ
r0

)
. (1)37

ε is a function of the variables R0, r0 and θ0, which are all related through the expression: 2R0 −38

d = 2r0(1 − cos θ0) ≈ r0θ
2, see figure 2 of the main text. Minimizing ε subject to the constraint39

g = 2R0 − d − r0θ
2, we obtain:40

r0 =

√
3κ
2α

(2)41
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and42

3π −
r0

2π

R2
0
+

8√r0
√

2R0 − d
= 0. (3)43

(b) Compressed folded edge44
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Figure 1: Molecular dynamics simulations of a folded edge in graphene (gray circles) deposited
on a graphene substrate compressed by a hard cylinder of radius 10 nm (yellow circles) Top panel:
front view of the compressed folded edge. Bottom panel: a cross section of the folded edge shown
in the top panel. The red, blue and black lines show our model for the cross section geometry of the
compressed folded edge.

In this section, we considered that a spherical probe of radius Rs compresses the folded edge de-45

scribed in the previous section. To obtain an analytical expression for the force as a function of the46

deformation caused by the probe tip, we applied the following assumptions:47

• folded edges compressed by spherical probes have cross-section geometries similar to that48

described by the red, blue and black lines of the bottom panel of figure 1, which also shows49

the geometry of compressed graphene folded edge obtained through MD simulations.50

• The reference (zero) energy is the situation where the 2D material lies straight, deposited on51
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another layer of the same 2D material, as shown in figure 1 of the main text for talc folded52

edges.53

• The relevant quantities are the energies of adhesion per unit of the area between layers (α)54

and between layer and probe (αp) instead of the energy of separation.55

Figure 1 shows that the curved parts of the folded edge are still very well described by a half tube56

and a half-soliton model. However, a flat region of width l appears between them, demanding an57

additional energetic contribution in Eq. 1. Because the region l is contact with the probe, its contri-58

bution the energy is (α − αp)l. Thus, the energy per unit of length of a compressed folded edge is59

the sum of adhesion and binding energies as follows:60

ε = (α − αp)l + α(πR + 2θ0r) +
κ

2

(
π

R
+

2θ
r

)
. (4)61

The compression applied by the probe deposits the half-soliton on the probe itself. Because the62

half-soliton length (2r0θ0) exceeds its horizontal projection (2r0sinθ0), the difference 2r0(θ0 −63

sinθ0) − 2r (θ − sinθ) contributes to the size of blue flat regions of the figure 1. Another contribu-64

tion, π(R0 − R), comes from the reduction of the half tube diameter relative to its uncompressed65

value (R0). Thus, 2l = π(R0 − R) + 2r0(θ0 − sinθ0) − 2r (θ − sinθ) and energy can be rewritten as66

follows:67

ε = (α − αp)
[
π

2
(R0 − R) + r0(θ0 − sinθ0) − r (θ − sinθ)

]
+ απR+

κπ

2R
+ 2θ

(
αr +

κ

2r

)
. (5)68

Minimizing ε subjected to the constraint: g = 2R − d − rθ2, we obtain: r ≈ r0 =
√

3κ
2α (We69

considered − (α−αp )θ2

12 +α ≈ α, which is reasonable because (α−αp) should be significantly smaller70

than α, and because d > R0 for all foldeds, θ
2

12 <
R0

12r0
= 1

12
√

3
). Using κ = 2r2

0α

3 and sinθ ≈ θ − θ3

3! we71

obtain:72
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ε = (α − αp)
[
π

2
R0 + r0(θ0 − sinθ0) − r0

θ3

6

]
+ (α + αp)

π

2
R +

r2
0πα

3R
+

8αθr0
3

. (6)73

Defining z = 2R − d and using 2R − d = 2r0(1 − cos θ0) ≈ rθ2 to eliminate θ (θ = −
√

z/r0), the74

above equation can be rewritten as follows:75

ε = (α−αp)[
π

2
R0+r0(θ0− sinθ0)+

z3/2

6√r0
]+ (α+αp)

π

2
(z + d)

2
+

2r2
0πα

3(z + d)
−

8α
√

z
√

r0

3
. (7)76

We can write the force per unit length that the folded applies on the probe as a function of z as fol-77

lows:78

f (z) = −
dE
dz
= (αp − α)

√
z

4√r0
− (α + αp)

π

4
+

2r2
0πα

3(z + d)2 +
4α√r0

3
√

z
. (8)79

From Eq. (8), the force applied in a 3D probe by the folded edge can be obtained, provided that the80

probe profile over the folded length is known. Let us define such a direction as x, as shown in the81

upper panel of figure 1. From here we can write82

F (h) =

xmax∫
xmin

f (x)dx, (9)83

where f (x) is force per unit length and h is a parameter that determines the probe height. For an84

object whose profile over the folded length is an arc circle (see the top panel of figure 1), Eq. 9 be-85

comes:86

F (h) = 2
xmax∫
0

f (x)dx = 2
2R0−d∫
h

f (z)
dx
dz

dz =87
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2
2R0−d∫
h

f (z)
z − (Rs − h)√

R2
s − (z − Rs − h)2

dz, (10)88

where Rs is the probe radius and h and 2R0 − d are the minimal and maximal values of variable z,89

respectively. Eq. 10 can be rewritten as follows:90

F (h) = 2
2R0−d∫
h

f (z)
dz√

R2
s

(z−Rs−h)2 − 1
=91

92

2
2R0−d∫
h

f (z)
dz√

(1 + z−h
Rs
+ ( z−h

Rs
)2 + ...)2 − 1

93

94

≈ 2
√

Rs

2

2R0−d∫
h

f (z)dz
√

z − h
, (11)95

where terms of the order [(z − h) /Rs]2 and superior are neglected because z − h at most equals to96

deformations caused by the probe (D = 2R0 − d − h), which are usually significantly smaller than97

Rs. Inserting Eq. (8) in Eq. (11) and solving the integrals we obtain:98

F (D) =
√

2Rs

[
−(α + αp)π

2
√

D +
2r2

0πα

3

( atan
√

D
2R0−D

(2R0 − D)3/2 +

√
D

(2R0 − D)2R0

)
+

(
(αp − α)(2R0 − d − D)

8√r0
+

4α√r0

3

)
ln

(√
2R0 − d +

√
D

√
2R0 − d −

√
D

)
+

(αp − α)
4√r0

√
2R0 − d

√
D

]

(12)99

R0 and d can be determined from AFM height profiles and r0 can be determined from Eq. (3).100
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Also, Rs is usually known in AFM experiments, which leaves two adjustable parameters in101

Eq. (12): α and αp.102

The force the compressed folded edge applies on the probe can be written as a function of the strain103

( S = D
2R0−d ) as follows:104

F (S)
√

2Rs
√

r0
=
−(α + αp)π

2

√
2R0 − d

r0

√
S +

(α − αp)
4

2R0 − d
r0

√
S

+
2πα

3

(
r0

2R0

)2
√

2R0 − d
r0

(
2
√

S +
8
3

(
1 −

d
2R0

)3/2

S3/2 + 3
(
1 −

d
2R0

)5/2

S5/2
)

+

(
(αp − α)(1 − S)

8
2R0 − d

r0
+

4α
3

)
ln

(
1 +
√

S

1 −
√

S

)
,

(13)105

where we use atan
(√

D
2R0−D

)
≈

√
D

2R0−D −
1
3

(
D

2R0−D

)3/2
and neglected terms of the order (D/2R0)3

106

and superior in the expansion of 1
1−D/2R0

. We also divided both sides of the above equation by107

√
r0. If the folded edges have the same proportions, that is, the same values of r0

R0
and d

r0
, a graph108

of F (S)
√

2Rs
√

r0
vs strain will be similar for folded edges of different thickness. In fact, the bottom panel109

of figure 4 of the main text shows that talc folds of thickness varying from 1 up to 11 nm present110

similar dependence of F (S)
√

2Rs
√

r0
with strain.111

Materials and Methods112

Sample Preparation113

The graphene and talc samples were prepared by the mechanical exfoliation onto a 300nm-thick114

Si oxide layer covering the Si substrate. folded layers were initially identified using optical mi-115

croscopy and, then, scanned by AFM.116

SPM characterization117

In all results shown in this paper, NSC18/NoAl silicon cantilevers with typical spring constant k118

≈2.8 N/m, nominal radius of curvature r≈10 nm and resonant frequency ω0 ≈ 75 kHz was em-119
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Figure 2: Schematic plot force versus tip-sample distance and the deformation value.

ployed. More accurate estimations of k and r were carried out by the use of the Sader’s method[4]120

and by imaging reference samples, respectively. The AFM characterization was carried out on a121

Bruker MultiMode SPM using the Peak Force Quantitative Nano-Mechanical imaging mode®[5].122

With the Peak Force QNM imaging mode® we can measure the maximum deformation of the sam-123

ple, defined as the penetration of the tip into the surface at the Peak Force (highest force). As the124

load on the sample under the tip increases, the deformation also increases. The measured deforma-125

tion may include both elastic and plastic contributions. We work in the elastic regime. Maximum126

sample deformation is calculated from the difference in separation from the point where the force is127

zero to the peak force point along the approach curve (see Fig. 2).[5] The hysteresis loop in Fig. 2128

is related to the dissipated energy during the PeakForce loop (tip approach and retraction).[5]129

Near-field tip-enhanced Raman spectroscopy130

For TERS measurements, we use a radially polarized laser beam with a 633 nm (1.96 eV) exci-131

tation energy and a home-built AFM scan-head, working in a shear-force mode. The optical and132

AFM systems are coupled via a gold plasmon-tuned tip pyramids (PTTP)39[6], to get the tip-133

enhanced Raman signal. We use a laser power of 100 µW to avoid sample heating.134

Molecular Dynamics Simulations135

We performed molecular dynamics simulations using the LAMMPS package[7]. Our system is136

composed of a graphene folded on a graphene layer the two of them containing 6804 atoms. The137
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graphene layer was kept "frozen" during all simulations, i.e., the resultant force on every atom138

of this layer was set to zero. Carbon atoms were modeled classically using the adaptive inter-139

molecular reactive empirical bond order (AIREBO) potential for the C-C interaction[8]. Periodic140

boundary condition was used in the y and x direction, see Fig. 1, while z was finite. To model the141

AFM tip we use a cylinder composed of 672 Lennard-Jones particles, which were not allowed142

to move relative to each other. The Lennard-Jones parameters for the AFM-C interaction were143

ε=1 meV and σ=3 Å. Simulations were performed in the canonical ensemble. The Nosé-Hoover144

thermostat[9,10] was used in order to keep the temperature T = 300 K. The timestep used was145

0.001 ps.146
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