Supporting Information

Copper-Mediated Oxidative C-H/N-H Activations with Alkynes by Removable Hydrazides

Feng Xiong¹, Bo Li², Chenrui Yang¹, Liang Zou¹, Wenbo Ma², Linghui Gu^{*2}, Ruhuai Mei^{*1,2}, and Lutz Ackermann^{*3,4}

- ² Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, P.R. China, 610052.
- ³ Institut für Organische und Biomolekulare Chemie, Georg-August-Universität, Tammannstraße 2, 37077 Göttingen, Germany.
- ⁴ Wöhler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universit ä Göttingen, Tammannstraße 2, 37077 Göttingen, Germany.

*cdglh017@163.com

*rmei@cdu.edu.cn

*lutz.ackermann@chemie.uni-goettingen.de

¹ Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, P. R. China.

Table of Contents

General Remarks	S-3
Optimization of the Reaction Conditions	S-4
General Procedure for the Copper-Promoted Oxidative C-H/N-H Activation	S-6
Characterization Data of Products 3	S-7
Copper-Mediated Decarboxylative C-H/N-H Activation	S-29
Removal of the Directing Group	S-30
Mechanistic Studies	S-3 1
References	S-39
NMR Spectra	S-40

General Remarks

Reactions were carried out under an Argon atmosphere using pre–dried glassware, if not noted otherwise. Benzhydrazides **1** were synthesized according to a previously described method [1-2]. Other chemicals were obtained from commercial sources and were used without further purification. Yields refer to isolated compounds, estimated to be > 95% pure as determined by ¹H-NMR. Chromatography separations were carried out on silica gel 60H (200-300 mesh) manufactured by Qingdao Haiyang Chemical Group Co. (China). High resolution mass spectrometry (HRMS) was measured on Thermo-DFS mass spectrometer. NMR spectra were recorded on JEOL 600 NMR (¹H 600 MHz; ¹³C 150 MHz; ¹⁹F 565 MHz) in CDCl₃. If not otherwise specified, chemical shifts (δ) are given in ppm.

Optimization of the Reaction Conditions

Table S-1 Optimization of the Copper-Promoted Oxidative C–H/N–H Activation with alkynes.^{*a*}

^{*a*} Reaction conditions: 25 mL Schlenk tube, **1a** (0.30 mmol), **2a** (0.90 mmol), $Cu(OAc)_2$ (1.1 equiv), base (2.0 equiv), solvent (3.0 mL), 15 h, under air. ^{*b*} Cu(OAc)_2

(0.8 equiv). c Cu(OAc)₂ (1.3 equiv). d DMSO (6.0 mL). e Cu(OAc)₂•H₂O (1.3 equiv). f Without Cu(OAc)₂. g Under N₂.

General Procedure for the Copper-Promoted Oxidative C-H/N-H Activation with alkynes

To a 25 mL schlenk tube was added benzhydrazide **1** (0.30 mmol, 1.00 equiv), alkyne **2** (0.90 mmol, 3.0 equiv), Cu(OAc)₂ (71 mg, 0.39 mmol, 1.30 equiv) and Na₂CO₃ (64 mg, 0.60 mmol, 2.00 equiv) under an air atmosphere. The mixture was stirred at 90 °C for 15 h. At ambient temperature, H₂O (15 mL) and Et₃N (0.5 mL) were added and a suspension was formed immediately. After filtrated through a celite pad, the reaction mixture was extracted with EtOAc (3×20 mL). The combined organic phase was washed with brine (20 mL) and dried over Na₂SO₄. Then Et₃N (0.5 mL), silica gel (0.8 g) were added and the combined solvent was removed under reduced pressure. The residue solid sample was purified by column chromatography on silica gel (petroleum/EtOAc = 5/1 to 2/1, with 1% Et₃N) yielded the desired product **3**.

Characterization Data of 3

(Z)-3-Benzylidene-2-(methyl[pyridin-2-yl]amino)isoindolin-1-one (3aa)

The general procedure was followed using hydrazide **1a** (68.2 mg, 0.30 mmol) and alkyne **2a** (91.9 mg, 0.90 mmol). Purification by column chromatography on silica gel (petroleum/EtOAc 20/1, with 1% Et₃N) yielded **3aa** (87.4 mg, 89%, Z/E = 13:1) as a light yellow solid. M. p.: 67–68 °C. ¹H NMR (600 MHz, CDCl₃) δ = 8.13 (ddd, *J* = 5.0, 1.9, 0.9 Hz, 1H), 7.90 (dd, *J* = 7.6, 1.0 Hz, 1H), 7.85–7.82 (m, 1H), 7.70 (d, *J* = 1.2 Hz, 1H), 7.56 (dd, *J* = 7.6, 0.9 Hz, 1H), 7.44 (ddd, *J* = 8.8, 7.1, 1.9 Hz, 1H), 7.17–7.05 (m, 5H), 6.85 (d, *J* = 0.9 Hz, 1H), 6.67 (ddd, *J* = 7.2, 5.0, 0.9 Hz, 1H), 6.44–6.41 (m, 1H), 3.01 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ = 165.7 (C_q), 157.6 (C_q), 147.7 (CH), 137.4 (CH), 136.2 (C_q), 133.2 (C_q), 132.8 (CH), 132.1 (C_q), 129.3 (CH), 128.7 (CH), 127.3 (CH), 126.5 (C_q), 123.8 (CH), 119.8 (CH), 114.3 (CH), 107.8 (CH), 106.4 (CH), 36.7 (CH₃). HR-MS (ESI) *m*/*z* calcd for C₂₁H₁₈N₃O [M+H⁺] 328.1444, found 328.1439.

(Z)-3-Benzylidene-2-(methyl[pyridin-2-yl]amino)-5-phenylisoindolin-1-one (3ba)

The general procedure was followed using hydrazide **1b** (91.0 mg, 0.30 mmol) and alkyne **2a** (91.9 mg, 0.90 mmol). Purification by column chromatography on silica gel (petroleum/EtOAc 10/1) yielded **3ba** (65.3 mg, 54%, Z/E = 29:1) as a light yellow

solid. M. p.: 135–136 °C. ¹H NMR (600 MHz, CDCl₃) δ = 8.15 (ddd, *J* = 5.0, 1.9, 0.9 Hz, 1H), 8.01 (dd, *J* = 1.6, 0.7 Hz, 1H), 7.97 (dd, *J* = 7.9, 0.7 Hz, 1H), 7.77 (dd, *J* = 7.9, 1.5 Hz, 1H), 7.71–7.68 (m, 2H), 7.55–7.51 (m, 2H), 7.48–7.44 (m, 2H), 7.19–7.07 (m, 5H), 6.92 (s, 1H), 6.68 (ddd, *J* = 7.1, 5.0, 0.9 Hz, 1H), 6.46 (dt, *J* = 8.5, 0.9 Hz, 1H), 3.03 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ = 165.6 (C_q), 157.6 (C_q), 147.8 (CH), 146.3 (C_q), 140.2 (C_q), 137.5 (CH), 136.9 (C_q), 133.2 (C_q), 132.2 (C_q), 129.0 (CH), 128.8 (CH), 128.6 (CH), 128.4 (CH), 127.4 (CH), 127.4 (CH), 127.3 (CH), 125.3 (C_q), 124.2 (CH), 118.5 (CH), 114.3 (CH), 107.9 (CH), 106.5 (CH), 36.7 (CH₃). HR-MS (ESI) *m*/*z* calcd for C₂₇H₂₂N₃O [M+H⁺] 404.1757, found 404.1755.

(Z)-3-Benzylidene-2-(methyl[pyridin-2-yl]amino)-5-(trifluoromethyl)isoindolin-1 -one (3ca)

The general procedure was followed using hydrazide **1c** (88.6 mg, 0.30 mmol) and alkyne **2a** (91.0 mg, 0.90 mmol). Purification by column chromatography on silica gel (petroleum/EtOAc 10/1) yielded **3ca** (117.4 mg, 99%, Z/E = 43:1) as a light yellow solid. M. p.: 121–122 °C. ¹H NMR (600 MHz, CDCl₃) δ = 8.14 (ddd, *J* = 5.0, 1.9, 0.9 Hz, 1H), 8.10 (d, *J* = 1.5 Hz, 1H), 8.03 (d, *J* = 7.9 Hz, 1H), 7.83–7.79 (m, 1H), 7.46 (ddd, *J* = 8.7, 7.1, 1.9 Hz, 1H), 7.19–7.15 (m, 1H), 7.13–7.06 (m, 4H), 6.94 (s, 1H), 6.70 (ddd, *J* = 7.2, 5.0, 0.9 Hz, 1H), 6.38 (dd, *J* = 8.5, 1.0 Hz, 1H), 3.02 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ = 164.5 (C_q), 157.1 (C_q), 147.9 (CH), 137.6 (CH), 136.5 (C_q), 134.7 (q, ²*J*_{C-F} = 32.6 Hz, C_q), 132.7 (C_q), 131.4 (C_q), 129.3 (C_q), 128.7 (CH), 127.7 (CH), 127.4 (CH), 126.0 (q, ³*J*_{C-F} = 3.8 Hz, CH), 124.5 (CH), 123.6 (q, ¹*J*_{C-F} = 271.0 Hz, C_q), 117.3 (q, ³*J*_{C-F} = 4.0 Hz, CH), 114.7 (CH), 109.7 (CH), 106.3 (CH), 36.9 (CH₃). ¹⁹F NMR (565 MHz, CDCl₃) δ = -62.49. HR-MS (ESI) *m*/*z* calcd for C₂₂H₁₇F₃N₃O [M+H⁺] 396.1318, found 396.1316.

(Z)-3-Benzylidene-5-fluoro-2-(methyl[pyridin-2-yl]amino)isoindolin-1-one (3da)

The general procedure was followed using hydrazide **1d** (73.6 mg, 0.30 mmol) and alkyne **2a** (91.0 mg, 0.90 mmol). Purification by column chromatography on silica gel (petroleum/EtOAc 10/1) yielded **3da** (91.2 mg, 88%, Z/E = 8:1) as a light yellow solid. M. p.: 119–120 °C. ¹H NMR (600 MHz, CDCl₃) δ = 8.13 (ddd, *J* = 5.0, 1.9, 0.9 Hz, 1H), 7.89 (dd, *J* = 8.4, 4.9 Hz, 1H), 7.51–7.42 (m, 3H), 7.19–7.14 (m, 1H), 7.11 – 7.07 (m, 4H), 6.80 (s, 1H), 6.68 (ddd, *J* = 7.1, 5.0, 0.9 Hz, 1H), 6.41 (dd, *J* = 8.5, 1.0 Hz, 1H), 3.00 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ = 166.0 (d, ¹*J*_{C-F} = 252.7 Hz, C_q), 164.9 (C_q), 157.4 (C_q), 147.8 (CH), 138.7 (d, ³*J*_{C-F} = 10.3 Hz, C_q), 137.5 (CH), 132.8 (C_q), 131.5 (d, ⁴*J*_{C-F} = 3.5 Hz, C_q), 128.8 (CH), 127.6 (CH), 127.3 (CH), 126.2 (d, ³*J*_{C-F} = 10.0 Hz, CH), 122.7 (C_q), 117.3 (d, ²*J*_{C-F} = 23.8 Hz, CH), 114.5 (CH), 108.9 (CH), 107.0 (d, ²*J*_{C-F} = 24.7 Hz, CH), 106.4 (CH), 36.8 (CH₃). ¹⁹F NMR (565 MHz, CDCl₃) δ = -(104.47–104.43) (m, 1F). HR-MS (ESI) *m*/*z* calcd for C₂₁H₁₇N₃O [M+H⁺] 346.1346, found 346.1350.

(Z)-3-Benzylidene-5-chloro-2-(methyl[pyridin-2-yl]amino)isoindolin-1-one (3ea)

The general procedure was followed using hydrazide **1e** (78.5 mg, 0.30 mmol) and alkyne **2a** (91.0 mg, 0.90 mmol). Purification by column chromatography on silica gel (petroleum/EtOAc 10/1) yielded **3ea** (97.7 mg, 90%, Z/E = 19:1) as a light yellow solid. M. p.: 131–132 °C. ¹H NMR (600 MHz, CDCl₃) δ = 8.13 (ddd, *J* = 5.0, 1.9, 0.9

Hz, 1H), 7.85–7.80 (m, 2H), 7.52 (dd, J = 8.1, 1.7 Hz, 1H), 7.45 (ddd, J = 8.7, 7.2, 1.9 Hz, 1H), 7.18–7.13 (m, 1H), 7.09 (d, J = 5.8 Hz, 4H), 6.82 (s, 1H), 6.70–6.66 (m, 1H), 6.39 (dd, J = 8.5, 1.0 Hz, 1H), 3.00 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) $\delta = 164.9$ (C_q), 157.3 (C_q), 147.8 (CH), 139.4 (C_q), 137.7 (C_q), 137.5 (CH), 132.8 (C_q), 131.3 (C_q), 129.7 (CH), 128.8 (CH), 128.8 (CH), 127.6 (CH), 127.3 (CH), 127.3 (CH), 125.1 (CH), 124.9 (C_q), 120.2 (CH), 114.5 (CH), 109.0 (CH), 106.3 (CH), 36.8 (CH₃). HR-MS (ESI) m/z calcd for C₂₁H₁₇³⁵ClN₃O [M+H⁺] 362.1055, found362.1054.

(Z)-3-Benzylidene-5-bromo-2-(methyl[pyridin-2-yl]amino)isoindolin-1-one (3fa)

The general procedure was followed using hydrazide **1f** (91.8 mg, 0.30 mmol) and alkyne **2a** (91.0 mg, 0.90 mmol). Purification by column chromatography on silica gel (petroleum/EtOAc 10/1) yielded **3fa** (108.5 mg, 89%, Z/E = 25:1) as a light yellow solid. M. p.: 140–141 °C. ¹H NMR (600 MHz, CDCl₃) δ = 8.13 (ddd, *J* = 5.0, 2.1, 1.0 Hz, 1H), 7.98 (d, *J* = 1.3 Hz, 1H), 7.76 (dd, *J* = 8.1, 1.1 Hz, 1H), 7.68 (dd, *J* = 8.1, 1.4 Hz, 1H), 7.45 (ddd, *J* = 8.4, 7.2, 1.5 Hz, 1H), 7.18–7.13 (m, 1H), 7.12–7.05 (m, 4H), 6.82 (d, *J* = 1.2 Hz, 1H), 6.68 (ddd, *J* = 7.1, 5.0, 1.1 Hz, 1H), 6.39 (dd, *J* = 8.5, 1.0 Hz, 1H), 2.99 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ = 165.0 (C_q), 157.3 (C_q), 147.8 (CH), 137.9 (C_q), 137.5 (CH), 132.8 (C_q), 132.5 (CH), 131.1 (C_q), 128.8 (CH), 128.8 (CH), 127.7 (C_q), 127.6 (CH), 127.4 (CH), 127.4 (CH), 125.3 (C_q), 125.2 (CH), 123.2 (CH), 114.5 (CH), 109.1 (CH), 106.4 (CH), 36.8 (CH₃). HR-MS (ESI) *m*/*z* calcd for C₂₁H₁₇BrN₃O [M+H⁺] 406.0550, found 406.0552.

(Z)-3-Benzylidene-5-iodo-2-(methyl[pyridin-2-yl]amino)isoindolin-1-one (3ga)

The general procedure was followed using hydrazide **1g** (105.9 mg, 0.30 mmol) and alkyne **2a** (91.0 mg, 0.90 mmol). Purification by column chromatography on silica gel (petroleum/EtOAc 10/1) yielded **3ga** (81.6 mg, 60%, Z/E = 9:1) as a light yellow solid. M. p.: 132–133 °C. ¹H NMR (600 MHz, CDCl₃) δ = 8.19 (d, *J* = 1.3 Hz, 1H), 8.12 (ddd, *J* = 5.0, 2.0, 0.9 Hz, 1H), 7.88 (dd, *J* = 8.0, 1.3 Hz, 1H), 7.61 (d, *J* = 8.0 Hz, 1H), 7.47–7.40 (m, 1H), 7.15 (p, *J* = 4.3 Hz, 1H), 7.07 (d, *J* = 4.5 Hz, 4H), 6.80 (s, 1H), 6.69–6.65 (m, 1H), 6.37 (d, *J* = 8.5 Hz, 1H), 2.98 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ = 165.2 (C_q), 157.3 (C_q), 147.8 (CH), 138.3 (CH), 137.7 (C_q), 137.5 (CH), 132.9 (C_q), 130.9 (C_q), 129.1 (CH), 128.7 (CH), 127.6 (CH), 127.3 (CH), 125.8 (C_q), 125.1 (CH), 114.5 (CH), 109.0 (CH), 106.3 (CH), 99.8 (C_q), 36.8 (CH₃). HR-MS (ESI) *m*/z calcd for C₂₁H₁₇IN₃O [M+H⁺] 454.0411, found 454.0408.

(Z)-3-Benzylidene-2-(methyl(pyridin-2-yl)amino)-5-(methylthio)isoindolin-1-one (3ha)

The general procedure was followed using hydrazide **1h** (82.0 mg, 0.30 mmol) and alkyne **2a** (91.0 mg, 0.90 mmol). Purification by column chromatography on silica gel (petroleum/EtOAc 10/1) yielded **3ha** (88.5 mg, 79%, Z/E = 14:1) as a light yellow solid. M. p.: 71–72 °C. ¹H NMR (600 MHz, CDCl₃) δ = 8.70 (s, 1H), 8.36 (s, 1H), 8.10 (d, *J* = 4.5 Hz, 1H), 7.68 (d, *J* = 8.2 Hz, 1H), 7.45 – 7.41 (m, 1H), 7.34 (dd, *J* =

8.3, 1.2 Hz, 1H), 7.14 – 7.08 (m, 1H), 7.07 – 7.01 (m, 4H), 6.79 (s, 1H), 6.66 (dd, J = 6.8, 5.5 Hz, 1H), 6.39 (d, J = 8.4 Hz, 1H), 2.95 (s, 3H), 2.09 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) $\delta = 169.3$ (C_q), 165.8 (C_q), 157.5 (C_q), 147.6 (CH), 143.0 (C_q), 137.7 (CH), 133.1 (C_q), 131.9 (C_q), 128.8 (CH), 128.8 (CH), 127.4 (CH), 127.3 (CH), 127.3 (CH), 124.3 (CH), 121.4 (C_q), 120.4 (CH), 114.5 (CH), 110.4 (CH), 108.6 (CH), 106.5 (CH), 36.8 (CH₃), 24.5 (CH₃). **HR-MS** (ESI) *m*/*z* calcd for C₂₂H₂₀N₃OS [M+H⁺] 374.1322, found 374.1319.

(Z)-3-Benzylidene-2-(methyl[pyridin-2-yl]amino)-1-oxoisoindoline-5-carbonitrile (3ia)

The general procedure was followed using hydrazide **1i** (75.7 mg, 0.30 mmol) and alkyne **2a** (91.0 mg, 0.90 mmol). Purification by column chromatography on silica gel (petroleum/EtOAc 10/1) yielded **3ia** (100.4 mg, 95%, Z/E = 19:1) as a light yellow solid. M. p.: 168–169 °C. ¹H NMR (600 MHz, CDCl₃) δ = 8.12 (dd, *J* = 4.7, 1.5 Hz, 2H), 8.00 (dd, *J* = 7.8, 0.8 Hz, 1H), 7.80 (dd, *J* = 7.8, 1.3 Hz, 1H), 7.45 (ddd, *J* = 8.7, 7.2, 1.9 Hz, 1H), 7.19–7.14 (m, 1H), 7.11–7.09 (m, 4H), 6.90 (s, 1H), 6.70 (ddd, *J* = 7.2, 5.0, 0.9 Hz, 1H), 6.35 (dd, *J* = 8.5, 0.9 Hz, 1H), 3.00 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ = 164.1 (C_q), 157.0 (C_q), 147.9 (CH), 137.6 (CH), 136.6 (C_q), 132.5 (C_q), 132.3 (CH), 130.8 (C_q), 129.7 (C_q), 128.8 (CH), 127.9 (CH), 127.4 (CH), 124.7 (CH), 124.1 (CH), 118.0 (C_q), 116.2 (C_q), 114.8 (CH), 110.4 (CH), 106.3 (CH), 37.0 (CH₃). **HR-MS** (ESI) *m/z* calcd for C₂₂H₁₇N₄O [M+H⁺] 353.1397, found 353.1395.

(Z)-N-{3-Benzylidene-2-(methyl[pyridin-2-yl]amino)-1-oxoisoindolin-5-yl}acetam ide (3ja)

The general procedure was followed using hydrazide 1j (85.3 mg, 0.30 mmol) and alkyne 2a (91.0 mg, 0.90 mmol). Purification by column chromatography on silica gel (petroleum/EtOAc 10/1) yielded 3ja (98.0 mg, 85%, Z/E = 9:1) as a light yellow solid. M. p.: 74–75 °C. ¹**H** NMR (600 MHz, CDCl₃) δ = 8.12 (ddd, J = 5.0, 2.1, 1.0 Hz, 1H), 7.77 (d, *J* = 7.9 Hz,1H), 7.62 (d, *J* = 1.5 Hz, 1H), 7.49–7.40 (m, 2H), 7.38 (dd, *J* = 8.1, 1.4 Hz, 1H), 7.17–7.12 (m, 1H), 7.11–7.05 (m, 4H), 6.82 (s, 1H), 6.70–6.64 (m, 1H), 6.42 (dd, J = 8.5, 1.0 Hz, 1H), 2.99 (s, 3H), 2.61 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) $\delta = 165.5 (C_a), 165.5 (C_a), 157.6 (C_a), 147.7 (CH), 145.8 (C_a), 137.5 (CH), 136.9 (C_a),$ 133.2 (C_a), 131.8 (C_a), 128.8 (CH), 127.4 (CH), 127.3 (CH), 126.5 (CH), 123.9 (CH), 123.0 (C_a), 116.1 (CH), 114.3 (CH), 107.9 (CH), 106.4 (CH), 36.7 (CH₃), 15.3 (CH₃). **HR-MS** (ESI) m/z calcd for C₂₃H₂₁N₄O₂ [M+H⁺] 385.1659, found 385.1656.

Methyl-(Z)-3-benzylidene-2-(methyl[pyridin-2-yl]amino)-1-oxoisoindoline-5-carb oxylate (3ka)

The general procedure was followed using hydrazide 1k (85.6 mg, 0.30 mmol) and alkyne 2a (91.0 mg, 0.90 mmol). Purification by column chromatography on silica gel (petroleum/EtOAc 10/1) yielded **3ka** (80.9 mg, 70%, Z/E = 14:1) as a light yellow solid. M. p.: 155–156 °C. ¹**H** NMR (600 MHz, CDCl₃) δ = 8.51 (s, 1H), 8.20 (dd, J = 7.9, 1.3 Hz, 1H), 8.12 (ddd, J = 5.0, 1.9, 0.9 Hz, 1H), 7.95 (dd, J = 7.9, 0.8 Hz, 1H), 7.43 (ddd, J = 8.5, 7.2, 1.9 Hz, 1H), 7.18–7.12 (m, 1H), 7.13–7.05 (m, 6H), 6.94 (s, 1H), 6.67 (ddd, J = 7.2, 5.0, 0.9 Hz, 1H), 6.38 (d, J = 8.5 Hz, 1H), 3.99 (s, 3H), 3.00 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) $\delta = 166.1$ (C_q), 164.8 (C_q), 157.3 (C_q), 147.8 (CH), 137.5 (CH), 136.2 (C_q), 134.1 (C_q), 132.9 (C_q), 131.6 (C_q), 130.1 (CH), 129.9 (C_q), 128.8 (CH), 127.6 (CH), 127.3 (CH), 123.8 (CH), 121.4 (CH), 114.5 (CH), 109.1 (CH), 106.3 (CH), 52.7 (CH₃), 36.8 (CH₃). **HR-MS** (ESI) *m*/*z* calcd for C₂₃H₂₀N₃O₃ [M+H⁺] 386.1499, found 386.1498.

(Z)-3-Benzylidene-2-(methyl(pyridin-2-yl)amino)-6-(trifluoromethyl)isoindolin-1 -one (3la)

The general procedure was followed using hydrazide **11** (88.6 mg, 0.30 mmol) and alkyne **2a** (91.0 mg, 0.90 mmol). Purification by column chromatography on silica gel (petroleum/EtOAc 10/1) yielded **3la** (116.2 mg, 98%, Z/E = 13:1) as a light yellow solid. M. p.: 119–120 °C. ¹H NMR (600 MHz, CDCl₃) δ = 8.17 (s, 1H), 8.13 (dd, *J* = 5.0, 1.5 Hz, 1H), 7.96–7.91 (m, 2H), 7.47–7.42 (m, 1H), 7.20–7.14 (m, 1H), 7.12–7.05 (m, 4H), 6.94 (s, 1H), 6.69 (dd, *J* = 7.3, 4.9 Hz, 1H), 6.38 (d, *J* = 8.4 Hz, 1H), 3.01 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ = 164.5 (C_q), 157.2 (C_q), 147.9 (CH), 139.1 (C_q), 137.6 (CH), 132.7 (C_q), 131.5 (q, ²*J*_{C-F} = 35.1 Hz, C_q), 131.4 (C_q), 129.5 (q, ³*J*_{C-F} = 3.8 Hz, CH), 128.8 (CH), 127.8 (CH), 127.4 (CH), 127.0 (C_q), 123.6 (q, ¹*J*_{C-F} = 272.7 Hz, C_q), 121.2 (q, ³*J*_{C-F} = 4.0 Hz, CH), 120.5 (CH), 114.7 (CH), 110.3 (CH), 106.3 (CH), 36.9 (CH₃). ¹⁹F NMR (565 MHz, CDCl₃) δ = -62.27 (s, 3F). HR-MS (ESI) *m/z* calcd for C₂₂H₁₇F₃N₃O [M+H⁺] 396.1318, found 396.1314.

(Z)-6-Acetyl-3-benzylidene-2-(methyl(pyridin-2-yl)amino)isoindolin-1-one (3ma) The general procedure was followed using hydrazide 1m (80.8 mg, 0.30 mmol) and alkyne 2a (91.0 mg, 0.90 mmol). Purification by column chromatography on silica gel (petroleum/EtOAc 10/1) yielded 3ma (70.9 mg, 64%, Z/E = 15:1) as a light yellow solid. M. p.: 132–133 °C. ¹H NMR (600 MHz, CDCl₃) δ = 8.43 (s, 1H), 8.32 (dd, *J* = 8.2, 1.3 Hz, 1H), 8.13 (dd, *J* = 4.7, 1.5 Hz, 1H), 7.92 (d, *J* = 8.1 Hz, 1H), 7.47 – 7.41 (m, 1H), 7.16 (t, *J* = 6.9 Hz, 1H), 7.13 – 7.05 (m, 4H), 6.94 (s, 1H), 6.69 (dd, *J* = 6.9, 5.1 Hz, 1H), 6.40 (d, *J* = 8.4 Hz, 1H), 3.01 (s, 3H), 2.69 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ = 196.8 (C_q), 165.1 (C_q), 157.3 (C_q), 147.9 (CH), 140.0 (C_q), 137.7 (C_q), 137.6 (CH), 132.8 (C_q), 132.2 (CH), 131.7 (C_q), 128.8 (CH), 128.8 (CH), 127.8 (CH), 127.4 (CH), 127.4 (CH), 126.8 (C_q), 124.3 (CH), 120.3 (CH), 114.6 (CH), 110.5 (CH), 106.4 (CH), 36.9 (CH₃), 26.8 (CH₃). HR-MS (ESI) *m*/*z* calcd for C₂₃H₂₀N₃O₂ [M+H⁺] 370.1550, found 370.1548.

(Z)-3-Benzylidene-2-(methyl[pyridin-2-yl]amino)-2,3-dihydro-1H-pyrrolo[3,4-c]p yridin-1-one (3na)

The general procedure was followed using hydrazide **1n** (68.5 mg, 0.30 mmol) and alkyne **2a** (91.0 mg, 0.90 mmol). Purification by column chromatography on silica gel (petroleum/EtOAc 10/1) yielded **3na** (68.0 mg, 69%, Z/E = 27:1) as a light yellow solid. M. p.: 143–144 °C. ¹H NMR (600 MHz, CDCl₃) $\delta = 9.21$ (d, J = 1.2 Hz, 1H), 8.83 (d, J = 5.0 Hz, 1H), 8.24–8.08 (m, 1H), 7.76 (dd, J = 5.0, 1.2 Hz, 1H), 7.44 (ddd, J = 8.8, 7.2, 1.9 Hz, 1H), 7.16 (tt, J = 6.4, 2.0 Hz, 1H), 7.09 (h, J = 6.0 Hz, 4H), 6.97 s-15

(s, 1H), 6.69 (dd, J = 7.2, 5.0 Hz, 1H), 6.35 (d, J = 8.5 Hz, 1H), 3.00 (s, 3H). ¹³C **NMR** (150 MHz, CDCl₃) $\delta = 164.2$ (C_q), 157.0 (C_q), 149.8 (CH), 147.9 (CH), 142.7 (CH), 137.6 (CH), 133.2 (C_q), 132.6 (C_q), 130.6 (C_q), 130.3 (C_q), 128.7 (CH), 127.7 (CH), 127.4 (CH), 117.0 (CH), 114.8 (CH), 110.3 (CH), 106.3 (CH), 36.9 (CH₃). **HR-MS** (ESI) m/z calcd for C₂₀H₁₇N₄O [M+H⁺] 329.1397, found 329.1391.

(Z)-2-[Methyl(pyridin-2-yl)amino]-3-(4-methylbenzylidene)-5-(trifluoromethyl)is oindolin-1-one (3cb)

The general procedure was followed using hydrazide **1c** (88.6 mg, 0.30 mmol) and alkyne **2b** (104.5 mg, 0.90 mmol). Purification by column chromatography on silica gel (petroleum/EtOAc 10/1) yielded **3cb** (109.3 mg, 89%) as a light yellow solid. M. p.: 135–136 °C. ¹H NMR (600 MHz, CDCl₃) δ = 8.16 (ddd, *J* = 5.0, 1.9, 0.9 Hz, 1H), 8.08 (s, 1H), 8.01 (d, *J* = 7.2 Hz, 1H), 7.78 (d, *J* = 9.3 Hz, 1H), 7.46 (ddd, *J* = 8.7, 7.1, 1.8 Hz, 1H), 7.02 (d, *J* = 7.9 Hz, 2H), 6.92–6.89 (m, 3H), 6.70 (ddd, *J* = 7.2, 5.0, 0.9 Hz, 1H), 6.42 (dd, *J* = 8.5, 0.9 Hz, 1H), 3.03 (s, 3H), 2.26 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ = 164.5 (C_q), 157.4 (C_q), 147.9 (CH), 137.7 (C_q), 137.6 (CH), 136.7 (C_q), 134.6 (q, ²*J*_{C-F} = 32.4 Hz, C_q), 130.8 (C_q), 129.6 (C_q), 129.2 (C_q), 128.9 (CH), 128.2 (CH), 125.8 (q, ³*J*_{C-F} = 3.6 Hz, CH), 124.5 (CH), 123.6 (q, ¹*J*_{C-F} = 273.1 Hz, C_q), 117.2 (q, ³*J*_{C-F} = 4.1 Hz, CH), 114.7 (CH), 110.1 (CH), 106.4 (CH), 36.9 (CH₃), 21.2 (CH₃). ¹⁹F NMR (565 MHz, CDCl₃) δ = -62.49 (s, 3F). HR-MS (ESI) *m*/*z* calcd for C₂₃H₁₉F₃N₃O [M+H⁺] 410.1475, found 410.1473.

(Z)-3-(4-Ethylbenzylidene)-2-(methyl[pyridin-2-yl]amino)-5-(trifluoromethyl)isoi ndolin-1-one (3cd)

The general procedure was followed using hydrazide **1c** (88.6 mg, 0.30 mmol) and alkyne **2d** (117.2 mg, 0.90 mmol). Purification by column chromatography on silica gel (petroleum/EtOAc 10/1) yielded **3cd** (115.6 mg, 91%) as a light yellow solid. M. p.: 119–120 °C. ¹H NMR (600 MHz, CDCl₃) δ = 8.14 (ddd, *J* = 5.0, 1.9, 0.9 Hz, 1H), 8.08 (s, 1H), 8.01 (d, *J* = 8.0 Hz, 1H), 7.78 (dd, *J* = 8.0, 0.9 Hz, 1H), 7.45 (ddd, *J* = 8.5, 7.2, 1.9 Hz, 1H), 7.05 (d, *J* = 7.5 Hz, 2H), 6.94 – 6.90 (m, 3H), 6.69 (ddd, *J* = 7.1, 5.0, 0.9 Hz, 1H), 6.40 (d, *J* = 8.5 Hz, 1H), 3.04 (s, 3H), 2.56 (q, *J* = 7.6 Hz, 2H), 1.16 (t, *J* = 7.6 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ = 164.5 (Cq), 157.3 (Cq), 147.9 (CH), 144.0 (Cq), 137.6 (CH), 136.7 (Cq), 134.6 (q, ²*J*_{C-F} = 32.5 Hz, Cq), 130.8 (Cq), 129.8 (Cq), 129.2 (Cq), 129.0 (CH), 126.9 (CH), 125.8 (q, ³*J*_{C-F} = 3.7 Hz, CH), 124.5 (CH), 123.6 (q, ¹*J*_{C-F} = 273.0 Hz, Cq), 117.2 (q, ³*J*_{C-F} = 4.0 Hz, CH), 114.6 (CH), 110.1 (CH), 106.4 (CH), 36.9 (CH₃), 28.5 (CH₂), 15.4 (CH₃). ¹⁹F NMR (565 MHz, CDCl₃) δ = -62.48 (s, 3F). HR-MS (ESI) *m*/z calcd for C₂₄H₂₁F₃N₃O [M+H⁺] 424.1631, found 424.1627.

(Z)-2-(Methyl[pyridin-2-yl]amino)-3-(4-pentylbenzylidene)-5-(trifluoromethyl)is oindolin-1-one (3ce)

The general procedure was followed using hydrazide **1c** (88.6 mg, 0.30 mmol) and alkyne **2e** (155.1 mg, 0.90 mmol). Purification by column chromatography on silica gel (petroleum/EtOAc 10/1) yielded **3ce** (135.5 mg, 97%) as a light yellow solid. M.

p.: 71–72 °C. ¹H NMR (600 MHz, CDCl₃) δ = 8.14 (ddd, J = 5.0, 1.9, 0.9 Hz, 1H), 8.08 (s, 1H), 8.01 (d, J = 7.9 Hz, 1H), 7.78 (d, J = 8.1 Hz, 1H), 7.44 (ddd, J = 8.4, 7.2, 1.9 Hz, 1H), 7.04 (d, J = 8.4 Hz, 2H), 6.93–6.88 (m, 3H), 6.72–6.67 (m, 1H), 6.38 (d, J = 8.5 Hz, 1H), 3.04 (s, 3H), 2.51 (t, J = 7.7 Hz, 2H), 1.53 (dtd, J = 9.0, 7.5, 6.2 Hz, 2H), 1.37–1.20 (m, 4H), 0.88 (t, J = 7.2 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ = 164.5 (C_q), 157.3 (C_q), 147.9 (CH), 142.7 (C_q), 137.5 (CH), 136.7 (C_q), 134.6 (q, ² J_{C-F} = 32.6 Hz, C_q), 130.9 (C_q), 129.8 (C_q), 129.2 (C_q), 128.9 (CH), 127.5 (CH), 125.8 (q, ³ J_{C-F} = 4.1 Hz, CH), 124.5 (CH), 123.6 (q, ¹ J_{C-F} = 273.1 Hz, C_q), 117.2 (q, ³ J_{C-F} = 4.0 Hz, CH), 114.6 (CH), 110.1 (CH), 106.3 (CH), 36.9 (CH₃), 35.6 (CH₂), 31.3 (CH₂), 30.9 (CH₂), 22.5 (CH₂), 14.0 (CH₃). ¹⁹F NMR (565 MHz, CDCl₃) δ = -62.48 (s, 3F). HR-MS (ESI) m/z calcd for C₂₇H₂₇F₃N₃O [M+H⁺] 466.2101, found 466.2097.

(Z)-3-(4-Methoxybenzylidene)-2-(methyl[pyridin-2-yl]amino)-5-(trifluoromethyl) isoindolin-1-one (3cf)

The general procedure was followed using hydrazide **1c** (88.6 mg, 0.30 mmol) and alkyne **2f** (118.9 mg, 0.90 mmol). Purification by column chromatography on silica gel (petroleum/EtOAc 10/1) yielded **3cf** (126.3 mg, 99%, Z/E = 10:1) as a light yellow solid. M. p.: 122–123 °C. ¹H NMR (600 MHz, CDCl₃) δ = 8.19–8.15 (m, 1H), 8.07 (s, 1H), 8.00 (dd, *J* = 7.9, 0.8 Hz, 1H), 7.78 (d, *J* = 1.4 Hz, 1H), 7.47 (ddd, *J* = 8.8, 7.1, 1.8 Hz, 1H), 7.10 (d, *J* = 9.0 Hz, 2H), 6.88 (s, 1H), 6.74–6.69 (m, 1H), 6.63 (d, *J* = 8.8 Hz, 2H), 6.45 (d, *J* = 8.5 Hz, 1H), 3.74 (s, 3H), 3.07 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ = 164.5 (C_q), 159.3 (C_q), 157.5 (C_q), 147.9 (CH), 137.7 (CH), 136.8 (C_q), 134.6 (q, ²*J*_{C-F} = 32.8 Hz, C_q), 130.6 (CH), 130.3 (C_q), 129.0 (C_q), 125.7 (q, ³*J*_{C-F} = 3.7 Hz, CH), 124.9 (C_q), 124.5 (CH), 123.7 (q, ¹*J*_{C-F} = 271.5 Hz, C_q), 117.1 (q, ³*J*_{C-F} = 4.2 Hz, CH), 114.8 (CH), 113.0 (CH), 110.0 (CH), 106.5 (CH), 55.2 (CH₃),

36.9 (CH₃). ¹⁹**F** NMR (565 MHz, CDCl₃) δ = -62.51 (s, 3F). **HR-MS** (ESI) *m/z* calcd for C₂₃H₁₉F₃N₃O₂ [M+H⁺] 426.1424, found 426.1421.

(Z)-2-(Methyl[pyridin-2-yl]amino)-5-(trifluoromethyl)-3-(4-(trifluoromethyl)ben zylidene)isoindolin-1-one (3cg)

The general procedure was followed using hydrazide **1c** (88.6 mg, 0.30 mmol) and alkyne **2g** (153.1 mg, 0.90 mmol). Purification by column chromatography on silica gel (petroleum/EtOAc 10/1) yielded **3cg** (66.4 mg, 52%) as a light yellow solid. M. p.: 153–154 °C. ¹H NMR (600 MHz, CDCl₃) δ = 8.12–8.10 (m, 1H), 8.09 (s, 1H), 8.02 (d, *J* = 7.2 Hz, 1H), 7.84–7.81 (m, 1H), 7.45 (ddd, *J* = 8.8, 7.2, 1.9 Hz, 1H), 7.33 (d, *J* = 8.0 Hz, 2H), 7.22–7.18 (m, 2H), 6.87 (s, 1H), 6.74–6.68 (m, 1H), 6.34 (d, *J* = 8.5 Hz, 1H), 3.02 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ = 164.5 (C_q), 156.9 (C_q), 148.1 (CH), 137.7 (CH), 136.7 (C_q), 136.2 (C_q), 134.9 (q, ²*J*_{C-F} = 32.9 Hz, C_q), 132.7 (C_q), 129.5 (C_q), 129.4 (q, ²*J*_{C-F} = 32.7 Hz, C_q), 129.0 (CH), 126.5 (q, ³*J*_{C-F} = 3.6 Hz, CH), 124.6 (CH), 124.2 (q, ³*J*_{C-F} = 3.7 Hz, CH), 123.9 (q, ¹*J*_{C-F} = 271.7 Hz, C_q), 123.5 (q, ¹*J*_{C-F} = 273.1 Hz, C_q), 117.4 (q, ³*J*_{C-F} = 4.1 Hz, CH), 115.1 (CH), 107.3 (CH), 106.2 (CH), 37.1 (CH₃). ¹⁹F NMR (565 MHz, CDCl₃) δ = -62.55 (s, 3F), -62.55 (s, 3F). HR-MS (ESI) *m/z* calcd for C₂₃H₁₆F₆N₃O [M+H⁺] 464.1192, found 464.1189.

(Z)-3-(4-Fluorobenzylidene)-2-(methyl[pyridin-2-yl]amino)isoindolin-1-one (3ah) The general procedure was followed using hydrazide 1a (68.2 mg, 0.30 mmol) and

alkyne 2h (108.1 mg, 0.90 mmol). Purification by column chromatography on silica gel (petroleum/EtOAc 10/1) yielded **3ah** (89.1 mg, 86%, Z/E = 14:1) as a light yellow solid. M. p.: 101–102 °C. ¹H NMR (600 MHz, CDCl₃) $\delta = 8.14$ (ddd, J = 5.0, 1.9, 0.9Hz, 1H), 7.88 (d, J = 7.6 Hz, 1H), 7.81 (d, J = 7.8 Hz, 1H), 7.69 (dd, J = 7.6, 1.1 Hz, 1H), 7.55 (dd, *J* = 7.5, 0.9 Hz, 1H), 7.44 (ddd, *J* = 8.5, 7.1, 1.9 Hz, 1H), 7.08–7.05 (m, 2H), 6.78–6.73 (m, 3H), 6.69 – 6.66 (m, 1H), 6.42 (d, J = 8.5 Hz, 1H), 3.02 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) $\delta = 165.7$ (C_a), 162.0 (d, ¹J_{C-F} = 247.0 Hz, C_a), 157.5 (C_{0}) , 147.9 (CH), 137.5 (CH), 136.2 (C_{0}), 132.9 (CH), 132.3 (C_{0}), 130.5 (d, ${}^{3}J_{C-F} =$ 8.0 Hz, CH), 129.4 (CH), 129.2 (d, ${}^{4}J_{C-F} = 3.4$ Hz, C_{0}), 126.5 (C_{0}), 123.8 (CH), 119.8 (CH), 114.5 (CH), 114.3 (d, ${}^{2}J_{C-F} = 21.5$ Hz, CH), 106.5 (CH), 106.4 (CH), 36.7 (CH₃). ¹⁹**F** NMR (565 MHz, CDCl₃) $\delta = -(113.98-114.03)$ (m, 1F). **HR-MS** (ESI) m/z calcd for C₂₁H₁₇FN₃O [M+H⁺] 346.1350, found 346.1347.

(Z)-3-(4-Fluorobenzylidene)-2-(methyl[pyridin-2-yl)amino]-5-(trifluoromethyl)is oindolin-1-one (3ch)

The general procedure was followed using hydrazide 1c (88.6 mg, 0.30 mmol) and alkyne **2h** (108.1 mg, 0.90 mmol). Purification by column chromatography on silica gel (petroleum/EtOAc 10/1) yielded 3ch (33.5 mg, 27%) as a light yellow solid. M. p.: 133–134 °C. ¹**H NMR** (600 MHz, CDCl₃) $\delta = 8.17-8.13$ (m, 1H), 8.08 (s, 1H), 8.01 (d, J = 7.9 Hz, 1H), 7.80 (d, J = 7.9 Hz, 1H), 7.46 (ddd, J = 8.7, 7.0, 1.9 Hz, 1H), 7.08 (dd, J = 8.5, 5.5 Hz, 2H), 6.86 (s, 1H), 6.78 (d, J = 8.6 Hz, 2H), 6.71 (dd, J = 7.2, 5.0 Hz, 1H), 6.39 (d, J = 8.5 Hz, 1H), 3.03 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) $\delta =$ 164.5 (C_a), 162.2 (d, ${}^{1}J_{C-F} = 248.2$ Hz, C_a), 157.2 (C_a), 148.0 (CH), 137.7 (CH), 136.4 (C_{a}) , 134.7 (q, ${}^{2}J_{C-F} = 32.8$ Hz, C_{a}), 131.6 (C_{a}), 130.6 (d, ${}^{3}J_{C-F} = 8.0$ Hz, CH), 129.3 (C_q), 128.7 (d, ${}^{4}J_{C-F} = 3.5$ Hz, C_q), 126.1 (q, ${}^{3}J_{C-F} = 3.6$ Hz, CH), 124.6 (CH), 123.6 (q,

 ${}^{1}J_{C-F} = 273.2 \text{ Hz}, C_{q}$, 117.3 (q, ${}^{3}J_{C-F} = 4.1 \text{ Hz}, \text{CH}$), 114.9 (CH), 114.5 (d, ${}^{2}J_{C-F} = 21.6 \text{ Hz}$, CH), 108.4 (CH), 106.3 (CH), 37.0 (CH₃). 19 **F** NMR (565 MHz, CDCl₃) $\delta = -62.53$ (s, 3F), -113.34 (p, J = 6.2 Hz, 1F). **HR-MS** (ESI) m/z calcd for $C_{22}H_{16}F_4N_3O$ [M+H⁺] 414.1224, found 414.1219.

(Z)-3-(4-Bromobenzylidene)-2-(methyl[pyridin-2-yl]amino)-5-(trifluoromethyl)is oindolin-1-one (3ci)

The general procedure was followed using hydrazide **1c** (88.6 mg, 0.30 mmol) and alkyne **2i** (162.9 mg, 0.90 mmol). Purification by column chromatography on silica gel (petroleum/EtOAc 10/1) yielded **3ci** (44.1 mg, 31%) as a light yellow solid. M. p.: 170–171 °C. ¹H NMR (600 MHz, CDCl₃) δ = 8.16 (ddd, *J* = 5.0, 1.9, 0.9 Hz, 1H), 8.07 (s, 1H), 8.01 (dd, *J* = 7.9, 0.8 Hz, 1H), 7.81 (dd, *J* = 8.0, 0.9 Hz, 1H), 7.51–7.44 (m, 1H), 7.24–7.18 (m, 2H), 6.98 (dd, *J* = 8.6, 0.8 Hz, 2H), 6.80 (s, 1H), 6.72 (ddd, *J* = 7.2, 5.0, 0.9 Hz, 1H), 6.39 (dd, *J* = 8.5, 0.9 Hz, 1H), 3.04 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ = 164.5 (C_q), 157.1 (C_q), 148.1 (CH), 137.7 (CH), 136.4 (C_q), 134.8 (q, ²*J*_{C-F} = 32.5 Hz, C_q), 131.9 (C_q), 131.7 (C_q), 130.5 (CH), 130.5 (CH), 129.4 (C_q), 117.3 (q, ³*J*_{C-F} = 4.0 Hz, CH), 115.0 (CH), 108.0 (CH), 106.3 (CH), 37.1 (CH₃). ¹⁹F NMR (565 MHz, CDCl₃) δ = -62.53 (s, 3F). HR-MS (ESI) *m*/z calcd for C₂₂H₁₆⁷⁹BrF₃N₃O [M+H⁺] 474.0423, found 474.0420.

(Z)-3-(3-Fluorobenzylidene)-2-(methyl[pyridin-2-yl]amino)-5-(trifluoromethyl)is oindolin-1-one (3cj)

The general procedure was followed using hydrazide **1c** (88.6 mg, 0.30 mmol) and alkyne **2j** (108.1 mg, 0.90 mmol). Purification by column chromatography on silica gel (petroleum/EtOAc 10/1) yielded **3cj** (69.4 mg, 56%) as a light yellow solid. M. p.: 147–148 °C. ¹**H NMR** (600 MHz, CDCl₃) δ = 8.15–8.12 (m, 1H), 8.08 (s, 1H), 8.02 (d, *J* = 7.9 Hz, 1H), 7.82 (dd, *J* = 7.9, 1.5 Hz, 1H), 7.46 (ddd, *J* = 8.8, 7.2, 1.9 Hz, 1H), 7.06 (dd, *J* = 8.0, 5.9 Hz, 1H), 6.90–6.83 (m, 3H), 6.78 (dd, *J* = 9.9, 2.2 Hz, 1H), 6.71 (ddd, *J* = 7.2, 5.0, 0.9 Hz, 1H), 6.37 (d, *J* = 8.8 Hz, 1H), 3.05 (s, 3H). ¹³**C NMR** (150 MHz, CDCl₃) δ = 164.5 (C_q), 161.8 (d, ¹*J*_{C-F} = 246.3 Hz, C_q), 157.0 (C_q), 148.0 (CH), 137.7 (CH), 136.3 (C_q), 135.0 (d, ³*J*_{C-F} = 8.1 Hz, C_q), 134.8 (q, ²*J*_{C-F} = 3.1 Hz, C_q), 132.3 (C_q), 129.5 (C_q), 128.9 (d, ³*J*_{C-F} = 8.5 Hz, CH), 126.4 (q, ³*J*_{C-F} = 3.7 Hz, CH), 124.6 (d, ⁴*J*_{C-F} = 2.9 Hz, CH), 123.6 (q, ¹*J*_{C-F} = 273.4 Hz, C_q), 117.4 (q, ³*J*_{C-F} = 4.0 Hz, CH), 107.8 (CH), 106.2 (CH), 37.1 (CH₃). ¹⁹**F NMR** (565 MHz, CDCl₃) δ = -62.54 (s, 3F), -113.76 (td, *J* = 9.3, 6.2 Hz, 1F). **HR-MS** (ESI) *m*/z calcd for C₂₂H₁₆F₄N₃O [M+H⁺] 414.1224, found 414.1222.

(Z)-3-(3-Chlorobenzylidene)-2-(methyl[pyridin-2-yl]amino)-5-(trifluoromethyl)is oindolin-1-one (3ck)

The general procedure was followed using hydrazide **1c** (88.6 mg, 0.30 mmol) and alkyne **2k** (122.9 mg, 0.90 mmol). Purification by column chromatography on silica gel (petroleum/EtOAc 10/1) yielded **3ck** (114.7 mg, 89%) as a light yellow solid. M. p.: 131–132 °C. ¹H NMR (600 MHz, CDCl₃) δ = 8.14 (ddd, *J* = 5.0, 1.8, 0.9 Hz, 1H), 8.07 (s, 1H), 8.02 (d, *J* = 7.9 Hz, 1H), 7.82 (d, *J* = 9.3 Hz, 1H), 7.47 (ddd, *J* = 8.7, 7.1, 1.8 Hz, 1H), 7.16–7.11 (m, 1H), 7.07–7.02 (m, 2H), 7.01–6.98 (m, 1H), 6.82 (s, 1H), 6.71 (dd, *J* = 7.2, 5.0 Hz, 1H), 6.38 (dd, *J* = 8.5, 1.0 Hz, 1H), 3.04 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ = 164.5 (C_q), 156.9 (C_q), 148.1 (CH), 137.8 (CH), 136.3 (C_q), 134.8 (q, ²*J*_{C-F} = 32.3 Hz, C_q), 134.9 (C_q), 132.4 (C_q), 131.9 (CH), 130.6 (CH), 129.4 (C_q), 128.9 (CH), 127.2 (CH), 126.4 (q, ³*J*_{C-F} = 3.7, 3.2 Hz, CH), 115.1 (CH), 107.4 (CH), 106.2 (CH), 37.0 (CH₃) ¹⁹F NMR (565 MHz, CDCl₃) δ = -62.53 (s, 3F). HR-MS (ESI) *m*/z calcd for C₂₂H₁₆³⁵ClF₃N₃O [M+H⁺] 430.0929, found 430.0928.

(Z)-3-(3-Bromobenzylidene)-2-(methyl(pyridin-2-yl)amino)-5-(trifluoromethyl)is oindolin-1-one (3cl)

The general procedure was followed using hydrazide **1c** (88.6 mg, 0.30 mmol) and alkyne **2l** (162.9 mg, 0.90 mmol). Purification by column chromatography on silica gel (petroleum/EtOAc 10/1) yielded **3cl** (98.2 mg, 69%) as a light yellow solid. M. p.: 135–136 °C. ¹H NMR (600 MHz, CDCl₃) δ = 8.17–8.13 (m, 1H), 8.07 (s, 1H), 8.02 (d, *J* = 7.9 Hz, 1H), 7.82 (d, *J* = 7.9 Hz, 1H), 7.50–7.45 (m, 1H), 7.28 (dd, *J* = 7.9, 1.0 Hz, 1H), 7.24 (s, 1H), 7.05 (d, *J* = 6.8 Hz, 1H), 7.02–6.97 (m, 1H), 6.81 (s, 1H), 6.72

(ddd, J = 7.2, 5.0, 1.0 Hz, 1H), 6.39 (dd, J = 8.4, 1.0 Hz, 1H), 3.04 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) $\delta = 164.5$ (C_q), 156.9 (C_q), 148.1 (CH), 137.8 (CH), 136.3 (C_q), 134.8 (q, ² $J_{C-F} = 32.3$ Hz, C_q), 134.9 (C_q), 132.4 (C_q), 131.9 (CH), 130.6 (CH), 129.4 (C_q), 128.9 (CH), 127.2 (CH), 126.4 (q, ³ $J_{C-F} = 3.8$ Hz, CH), 124.6 (CH), 123.6 (q, ¹ $J_{C-F} = 273.1$ Hz, C_q), 121.3 (C_q), 117.4 (q, ³ $J_{C-F} = 3.7, 3.2$ Hz, CH), 115.1 (CH), 107.4 (CH), 106.2 (CH), 37.0 (CH₃). ¹⁹F NMR (565 MHz, CDCl₃) $\delta = -62.53$ (s, 3F). HR-MS (ESI) m/z calcd for C₂₂H₁₆⁷⁹BrF₃N₃O [M+H⁺] 474.0423, found 474.0424.

(Z)-N-[3-{(2-{Methyl[pyridin-2-yl]amino}-3-oxo-6-(trifluoromethyl)isoindolin-1ylidene)methyl}phenyl]acetamide (3cm)

The general procedure was followed using hydrazide **1c** (88.6 mg, 0.30 mmol) and alkyne **2m** (143.3 mg, 0.90 mmol). Purification by column chromatography on silica gel (petroleum/EtOAc 10/1) yielded **3cm** (99.1 mg, 73%) as a light yellow solid. M. p.: 75–76 °C. ¹**H** NMR (600 MHz, CDCl₃) δ = 8.14 (dd, *J* = 5.2, 1.8 Hz, 1H), 8.04 (s, 1H), 7.99 (d, *J* = 7.9 Hz, 1H), 7.78 (d, *J* = 8.0 Hz, 1H), 7.48 (ddd, *J* = 8.7, 7.2, 1.9 Hz, 1H), 7.38–7.33 (m, 1H), 7.14 (s, 1H), 7.10 (s, 1H), 7.04 (dd, *J* = 7.9, 7.9 Hz, 1H), 7.86 (s, 1H), 6.85 (d, *J* = 8.7 Hz, 1H), 6.71 (dd, *J* = 7.1, 5.0 Hz, 1H), 6.42 (d, *J* = 8.5 Hz, 1H), 2.96 (s, 3H), 2.00 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ = 168.1 (C_q), 164.5 (C_q), 157.3 (C_q), 147.9 (CH), 137.8 (CH), 137.1 (C_q), 136.5 (C_q), 134.8 (q, ²*J*_{C-F} = 32.7 Hz, C_q), 133.2 (C_q), 131.4 (C_q), 129.1 (C_q), 128.1 (CH), 126.1 (q, ³*J*_{C-F} = 3.8 Hz, CH), 124.5 (CH), 124.4 (CH), 123.5 (q, ¹*J*_{C-F} = 272.9 Hz, C_q), 120.5 (CH), 119.2 (CH), 117.3 (q, ³*J*_{C-F} = 4.1 Hz, CH), 114.5 (CH), 109.2 (CH), 106.5 (CH), 36.8 (CH₃), 24.4 (CH₃). ¹⁹F NMR (565 MHz, CDCl₃) δ = -62.51 (s, 3F). HR-MS (ESI) *m*/*z* calcd for C₂₄H₂₀F₃N₄O₂ [M+H⁺] 453.1533, found 453.1533.

(Z)-3-(3-Aminobenzylidene)-2-(methyl[pyridin-2-yl]amino)-5-(trifluoromethyl)is oindolin-1-one (3cn)

The general procedure was followed using hydrazide **1c** (88.6 mg, 0.30 mmol) and alkyne **2n** (105.4 mg, 0.90 mmol). Purification by column chromatography on silica gel (petroleum/EtOAc 10/1) yielded **3cn** (91.1 mg, 74%) as a light yellow solid. M. p.: 115–116 °C. ¹**H NMR** (600 MHz, CDCl₃) $\delta = 8.19$ (d, J = 5.0 Hz, 1H), 8.07 (s, 1H), 8.02 (d, J = 7.9 Hz, 1H), 7.79 (d, J = 7.9 Hz, 1H), 7.49 (ddd, J = 8.8, 7.1, 1.8 Hz, 1H), 6.94 (dd, J = 7.8, 7.8 Hz, 1H), 6.86 (s, 1H), 6.75–6.68 (m, 1H), 6.56 (d, J = 7.5 Hz, 1H), 6.50 (d, J = 8.2 Hz, 1H), 6.45 (d, J = 8.5 Hz, 1H), 6.32 (s, 1H), 3.24 (s_{br}, 2H), 3.01 (s, 3H). ¹³**C NMR** (150 MHz, CDCl₃) $\delta = 164.6$ (C_q), 157.4 (C_q), 148.0 (CH), 145.4 (C_q), 137.7 (CH), 136.7 (C_q), 134.7 (q, ² $J_{C-F} = 32.6$ Hz, C_q), 133.5 (C_q), 131.0 (C_q), 129.2 (C_q), 128.4 (CH), 126.0 (q, ³ $J_{C-F} = 3.6$ Hz, CH), 124.5 (CH), 123.6 (q, ¹ $J_{C-F} = 273.5$ Hz, C_q), 119.2 (CH), 117.2 (q, ³ $J_{C-F} = 4.2$ Hz, CH), 116.0 (CH), 114.7 (CH), 110.1 (CH), 106.3 (CH), 36.8 (CH₃). ¹⁹**F NMR** (565 MHz, CDCl₃) $\delta = -62.50$ (s, 3F). **HR-MS** (ESI) *m/z* calcd for C₂₂H₁₈F₃N₄O [M+H⁺] 411.1427, found 411.1425.

(Z)-3-(3,5-Dimethoxybenzylidene)-2-(methyl[pyridin-2-yl]amino)-5-(trifluoromet hyl)isoindolin-1-one (3co)

The general procedure was followed using hydrazide 1c (88.6 mg, 0.30 mmol) and

alkyne **2o** (146.0 mg, 0.90 mmol). Purification by column chromatography on silica gel (petroleum/EtOAc 10/1) yielded **3co** (128.4 mg, 94%, Z/E = 12:1) as a light yellow solid. M. p.: 115–116 °C. ¹H NMR (600 MHz, CDCl₃) δ =8.16 (dd, J = 5.0, 1.0 Hz, 1H), 8.07 (s, 1H), 8.00 (d, J = 7.9 Hz, 1H), 7.79 (d, J = 7.5 Hz, 1H), 7.46 (ddd, J = 8.8, 7.2, 1.9 Hz, 1H), 6.86 (s, 1H), 6.70 (ddd, J = 7.2, 5.0, 0.9 Hz, 1H), 6.45 (d, J = 8.5 Hz, 1H), 6.30–6.29 (m, 3H), 3.46 (s, 6H), 3.05 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ = 164.4 (C_q), 159.9 (C_q), 157.4 (C_q), 148.1 (CH), 137.7 (CH), 136.5 (C_q), 134.7 (C_q), 134.7 (q, ³ J_{C-F} = 32.4 Hz, C_q), 131.5 (C_q), 129.3 (C_q), 126.1 (q, ³ J_{C-F} = 3.7 Hz, CH), 124.5 (CH), 123.6 (q, ¹ J_{C-F} = 273.4 Hz, C_q), 117.3 (q, ³ J_{C-F} = 4.3 Hz, CH), 114.8 (CH), 109.5 (CH), 106.7 (CH), 106.5 (CH), 100.6 (CH), 55.0 (CH₃), 37.0 (CH₃). ¹⁹F NMR (565 MHz, CDCl₃) δ = -62.51 (s, 3F). HR-MS (ESI) *m*/*z* calcd for C₂₄H₂₁F₃N₃O₃ [M+H⁺] 456.1530, found 456.1529.

(Z)-*N*-{3-({2-[Methyl(pyridin-2-yl)amino]-3-oxo-6-(trifluoromethyl)isoindolin-1ylidene}methyl)phenyl}isonicotinamide (3cp)

The general procedure was followed using hydrazide **1c** (88.6 mg, 0.30 mmol) and alkyne **2p** (200.0 mg, 0.90 mmol). Purification by column chromatography on silica gel (petroleum/EtOAc 10/1) yielded **3cp** (136.1 mg, 88%) as a light yellow solid. M. p.: 70–71 °C. ¹H NMR (600 MHz, CDCl₃) δ = 8.77–8.71 (m, 2H), 8.12–8.05 (m, 2H), 7.99 (d, J = 7.2 Hz, 1H), 7.79 (d, J = 8.0 Hz, 1H), 7.70 (s, 1H), 7.59–7.55 (m, 2H), 7.52 (d, J = 8.1 Hz, 1H), 7.42 (ddd, J = 8.7, 7.1, 1.9 Hz, 1H), 7.27 (s, 1H), 7.15 (t, J = 7.9 Hz, 1H), 7.01 – 6.95 (m, 1H), 6.89 (s, 1H), 6.57 (ddd, J = 7.2, 5.0, 1.0 Hz, 1H), 6.43 (d, J = 8.5 Hz, 1H), 2.97 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ = 164.4 (C_q),

163.4 (C_q), 157.3 (C_q), 150.6 (CH), 147.9 (CH), 141.7 (C_q), 137.8 (CH), 136.5 (C_q), 136.4 (C_q), 134.9 (d, ${}^{2}J_{C-F} = 32.5$ Hz, C_q), 133.5 (C_q), 131.7 (C_q), 129.1 (C_q), 128.4 (CH), 126.3 (q, ${}^{3}J_{C-F} = 3.7$ Hz, CH), 125.4 (CH), 124.6 (CH), 123.5 (d, ${}^{1}J_{C-F} = 273.2$ Hz, C_q), 121.2 (CH), 120.8 (CH), 119.9 (CH), 117.3 (q, ${}^{3}J_{C-F} = 3.9$ Hz, CH), 114.6 (CH), 108.8 (CH), 106.5 (CH), 36.8 (CH₃). ¹⁹**F** NMR (565 MHz, CDCl₃) $\delta = -62.53$ (s, 3F). **HR-MS** (ESI) m/z calcd for C₂₈H₂₁F₃N₅O₂ [M+H⁺] 516.1642, found 516.1641.

(Z)-2-(Methyl[pyridin-2-yl]amino)-3-(pyridin-3-ylmethylene)-5-(trifluoromethyl) isoindolin-1-one (3cq)

The general procedure was followed using hydrazide **1c** (88.6 mg, 0.30 mmol) and alkyne **2q** (92.8 mg, 0.90 mmol). Purification by column chromatography on silica gel (petroleum/EtOAc 10/1) yielded **3cq** (105.8 mg, 89%) as a light yellow solid. M. p.: 141–142 °C. ¹**H NMR** (600 MHz, CDCl₃) δ = 8.42 (dd, *J* = 2.2, 1.0 Hz, 1H), 8.37 (ddd, *J* = 4.9, 1.7, 0.7 Hz, 1H), 8.12 (ddd, *J* = 4.9, 1.9, 0.9 Hz, 1H), 8.10 (s, 1H), 8.01 (d, *J* = 7.9 Hz, 1H), 7.82 (d, *J* = 7.9 Hz, 1H), 7.45 (ddd, *J* = 8.4, 7.2, 1.9 Hz, 1H), 7.38 (ddd, *J* = 7.8, 2.4, 1.7, 1H), 6.99 (dd, *J* = 7.8, 4.9 Hz, 1H), 6.80 (s, 1H), 6.73–6.68 (m, 1H), 6.36 (d, *J* = 8.5 Hz, 1H), 3.07 (s, 3H). ¹³C **NMR** (150 MHz, CDCl₃) δ = 164.4 (C_q), 156.9 (C_q), 149.2 (CH), 148.6 (CH), 148.1 (CH), 137.8 (CH), 136.0 (C_q), 135.9 (CH), 134.9 (q, ²*J*_{C-F} = 32.8 Hz, C_q), 133.2 (C_q), 129.5 (C_q), 129.1 (C_q), 126.5 (q, ³*J*_{C-F} = 4.1 Hz, CH), 115.3 (CH), 106.3 (CH), 104.9 (CH), 37.2 (CH₃). ¹⁹F **NMR** (565 MHz, CDCl₃) δ = -62.55 (s, 3F). **HR-MS** (ESI) *m*/*z* calcd for C₂₁H₁₆F₃N₄O [M+H⁺] 397.1271, found 397.1269.

(Z)-2-(Methyl[pyridin-2-yl]amino)-3-(thiophen-2-ylmethylene)-5-(trifluoromethy l)isoindolin-1-one (3cr)

The general procedure was followed using hydrazide **1c** (88.6 mg, 0.30 mmol) and alkyne **2r** (105 mg, 0.90 mmol). Purification by column chromatography on silica gel (petroleum/EtOAc 10/1) yielded **3cr** (97.3 mg, 88%) as a light yellow solid. M. p.: 115–116 °C. ¹H NMR (600 MHz, CDCl₃) δ = 8.23 (ddd, *J* = 5.0, 1.9, 0.9 Hz, 1H), 8.07 (s, 1H), 8.00 (d, *J* = 7.9 Hz, 1H), 7.78 (d, *J* = 7.9 Hz, 1H), 7.51–7.43 (m, 1H), 7.18–7.17 (m, 1H), 7.15 (ddd, *J* = 4.1, 3.0, 1.1 Hz, 1H), 6.98 (dd, *J* = 5.0, 1.3 Hz, 1H), 6.80 (s, 1H), 6.75 (ddd, *J* = 7.2, 5.0, 0.9 Hz, 1H), 6.49 (d, *J* = 8.5 Hz, 1H), 3.24 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ = 164.3 (C_q), 157.9 (C_q), 148.1 (CH), 137.9 (CH), 136.8 (C_q), 134.6 (q, ²*J*_{C-F} = 32.7 Hz, C_q), 132.8 (C_q), 130.4 (C_q), 129.3 (CH), 128.9 (C_q), 125.8 (q, ³*J*_{C-F} = 3.6 Hz, CH), 125.6 (CH), 125.0 (CH), 124.5 (CH), 123.6 (d, ¹*J*_{C-F} = 271.3 Hz, C_q), 117.0 (q, ³*J*_{C-F} = 3.9 Hz, CH), 115.2 (CH), 106.7 (CH), 104.2 (CH), 37.3 (CH₃). ¹⁹F NMR (565 MHz, CDCl₃) δ = -62.49 (s, 3F). HR-MS (ESI) *m*/*z* calcd for C₂₀H₁₅F₃N₃OS [M+H⁺] 402.0882, found 402.0880.

Copper-Mediated Decarboxylative C-H/N-H Activation

(a) Copper-mediated decarboxylative C-H/N-H annulaiton

To a 25 mL schlenk tube was added benzhydrazide **1** (68.2 mg, 0.30 mmol, 1.00 equiv), 3-phenylpropiolic acid (131.5 mg, 0.90 mmol, 3.0 equiv), Cu(OAc)₂ (71 mg, 0.39 mmol, 1.30 equiv) and Na₂CO₃ (64 mg, 0.60 mmol, 2.00 equiv) under an air atmosphere. The mixture was stirred at 90 °C for 15 h. At ambient temperature, H₂O (15 mL) and Et₃N (0.5 mL) were added and a suspension was formed immediately. After filtrated through a celite pad, the reaction mixture was extracted with EtOAc (3 × 20 mL). The combined organic phase was washed with brine (20 mL) and dried over Na₂SO₄. Then Et₃N (0.5 mL), silica gel (0.8 g) were added and the combined solvent was removed under reduced pressure. The residue solid sample was purified by column chromatography on silica gel (petroleum/EtOAc = 6/1, with 1% Et₃N) yielded the desired product **3aa** (61.9 mg, 63%, Z/E = 27/1).

Removal of the Directing Group

(b) Removal of the Directing Group

An oven-dried 100 mL Schlenk round bottom flask was charged with **3aa** (0.22 mmol, 73 mg). After purging with Argon three times, freshly distilled THF (5.0 mL) was added, followed by SmI₂ (0.1 M in THF, 22 mL, 10 equiv) was added dropwise at 0 °C. 30 Minutes later, the mixture was warmed to ambient temperature and stirred for an additional 48 h. Then, the mixture was quenched with saturated aqueous $Na_2S_2O_3$ (5.0 mL) and extracted with DCM (3 × 20 mL), dried over Na_2SO_4 , filtered, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (petroleum/EtOAc = 5/1) yielded the desired product (Z)-S-3aa (31.1 63%) and (E)-S-3aa (8.0)16%). mg, mg, (Z)-3-Benzylideneisoindolin-1-one: ¹H NMR (600 MHz, CDCl₃) $\delta = 8.40$ (s_{br}, 1H), 7.87 (d, J = 7.6 Hz, 1H), 7.78 (d, J = 7.7 Hz, 1H), 7.63 (dd, J = 7.6, 1.1 Hz, 1H), 7.51 (dd, J = 7.5, 0.9 Hz, 1H), 7.48-7.40 (m, 4H), 7.30 (dd, J = 7.0, 1.5 Hz, 1H), 6.55 (s, 10.1)1H). ¹³**C NMR** (150 MHz, CDCl₃) δ = 169.0 (C_q), 138.2 (C_q), 135.0 (C_q), 133.1 (C_q), 132.2 (CH), 129.2 (CH), 129.2 (CH), 128.7 (C_q), 128.5 (CH), 127.7 (CH), 123.5 (CH), 119.8 (CH), 105.9 (CH). (E)-3-benzylideneisoindolin-1-one: ¹H NMR (600 MHz, $CDCl_3$) $\delta = 8.80$ (s, 1H), 7.87 (dd, J = 7.6, 1.1 Hz, 1H), 7.50–7.40 (m, 6H), 7.39–7.34 (m, 2H), 6.66 (s, 1H). ¹³C NMR (150 MHz, CDCl₃) δ = 168.3 (C_a), 135.5 (C_a), 134.9 (C_a), 134.5 (C_a), 131.8 (CH), 131.3 (C_a), 129.5 (CH), 129.4 (CH), 128.6 (CH), 127.9 (CH), 123.4 (CH), 123.4 (CH), 112.1 (CH). The analytical data are in accordance with those previously reported in the literature [3-5].

Mechanistic Studies

Competition Experiments

(a) competition experiment

The general procedure was followed using hydrazides **10** (77.2 mg, 0.30 mmol), **1c** (88.6 mg, 0.30 mmol) and ethynylbenzene **2a** (91.8 mg, 0.9 mmol). The mixture was stirred at 90 °C for 3 h. At ambient temperature, H₂O (15 mL) and Et₃N (0.5 mL) were added and a suspension was formed immediately. After filtrated through a celite pad, the reaction mixture was extracted with EtOAc/NEt₃ (100/1, 3 × 20 mL). The combined organic phase was washed with brine (20 mL) and dried over Na₂SO₄. After evaporation of the solvent, the crude mixture was analyzed by ¹H-NMR using 1,3,5-trimethoxybenzene (9.5 mg, 0.056 mmol) as the internal standard, which showed a product distribution of 3.85:1 in favor of **3ca**.

Figure S-1: ¹H-NMR spectra of mixture of 3ca and 3oa.

(b) competition experiment

The general procedure was followed using hydrazides **1c** (88.6 mg, 0.30 mmol), alkyne **2f** (59.5 mg, 0.45 mmol) and alkyne **2i** (54.1 mg, 0.45 mmol). The mixture was stirred at 90 °C for 3 h. At ambient temperature, H₂O (15 mL) and Et₃N (0.5 mL) were added and a suspension was formed immediately. After filtrated through a celite pad, the reaction mixture was extracted with EtOAc/NEt₃ (100/1, 3 × 20 mL). The combined organic phase was washed with brine (20 mL) and dried over Na₂SO₄. After evaporation of the solvent, the crude mixture was analysed by ¹H-NMR using 1,3,5-trimethoxybenzene (9.3 mg, 0.055 mmol) as the internal standard, which showed a product distribution of 2.85:1 in favor of **3cf**.

Figure S-2: ¹H-NMR spectra of mixture of **3cf** and **3ch**.

Deuteration Experiment

The general procedure was followed using alkyne **2a** (30.6 mg, 0.30 mmol) and hydrazide **1c** (265.8 mg, 0.90 mmol). The mixture was stirred in a solvent mixture of DMSO/D₂O (10/1, 6.6 mL) at 90 °C for 3 h. At ambient temperature, H₂O (15 mL) and Et₃N (0.5 mL) were added and a suspension was formed immediately. After filtrated through a celite pad, the reaction mixture was extracted with EtOAc/NEt₃ (100/1, 3×20 mL). The combined organic phase was washed with brine (20 mL) and dried over Na₂SO₄. Then Et₃N (1.0 mL), silica gel (0.8 g) were added and the combined solvent was removed under reduced pressure. The residue solid sample was purified by column chromatography on silica gel (petroleum/EtOAc = 5/1 to 2/1, with 1% Et₃N) yielded the desired product [D]_n-**3ca** (43 mg, 36%) and re-isolated starting material [D]_n-**1c** (132 mg, 50%) as white solids. The H/D-Scrambling was analysed in each of the compounds by ¹H-NMR spectroscopy.

Figure S-3: ¹H-NMR spectra of mixture of [D]_n-3ca.

Figure S-4: ¹H-NMR spectra of mixture of [D]_n-1c.

KIE studies

Parallel experiment

Two independent reactions following the general procedure were carried out using substrates **1a**, $[D]_5$ -**1a** (0.30 mmol each) and ethynylbenzene **2a** (91.8 mg, 0.90 mmol). The mixture was stirred at 90 °C for 1 h. At ambient temperature, these two mixtures were combined and quenched by adding H₂O (15 mL) and Et₃N (0.5 mL). After filtrated through a celite pad, the reaction mixture was extracted with EtOAc/ Et₃N (100/1, 3 × 20 mL). The combined organic phase was washed with brine (20 mL) and

Figure S-5: ¹H-NMR spectra of **3aa** and [D]₄-**3aa** for the parallel experiment.

dried over Na_2SO_4 . Then Et₃N (1.0 mL), silica gel (0.8 g) were added and the combined solvent was removed under reduced pressure. The residue solid sample was
purified by column chromatography on silica gel (petroleum/EtOAc = 5/1 to 2/1, with 1% Et₃N) yielded the mixture of the desired products [D]₄-**3aa** and **3aa** (53.0 mg, 27%). The H/D-Scrambling was analysed by ¹H-NMR spectroscopy.

competition experiment

The general procedure was followed using hydrazide **1a** (68.2 mg, 0.30 mmol), $[D]_5$ -**1a** (69.4 mg, 0.30 mmol) and ethynylbenzene **2a** (91.8 mg, 0.90 mmol). The mixture was stirred at 90 °C for 0.75 h. At ambient temperature, H₂O (15 mL) and Et₃N (0.5 mL) were added and a suspension was formed immediately. After filtrated through a celite pad, the reaction mixture was extracted with EtOAc/NEt₃ (100/1, 3 × 20 mL). The combined organic phase was washed with brine (20 mL) and dried over Na₂SO₄. Then Et₃N (1.0 mL), silica gel (0.8 g) were added and the combined solvent was removed under reduced pressure. The residue solid sample was purified by column chromatography on silica gel (petroleum/EtOAc = 5/1 to 2/1, with 1% Et₃N) yielded the mixture of the desired products [D]₄-**3ab** and **3ab** (37.3 mg, 19%) as a light yellow oil. The H/D-Scrambling was analysed by ¹H-NMR spectroscopy.

Figure S-6: ¹H-NMR spectra of **3aa** and [D]₄-**3aa** for the competition experiment.

Reference

[1] Zhai, S.; Qiu, S.; Chen, X.; Wu, J.; Zhao, H.; Tao, C.; Li, Y.; Cheng, B.; Wang, H.;
Zhai, H. *Chem. Commun.* **2018**, *54*, 98–101.

[2] Mei, R.; Sauermann, N.; Oliveira, J. C.; Ackermann, L. J. Am. Chem. Soc. 2018, 140, 7913–7921.

[3] a) Munoz, S. B.; Krishnamurti, V.; Barrio, P.; Mathew, T.; Prakash, G. K. S. *Org. Lett.* **2018**, *20*, 1042–1045.

[4] Zhang, L.-B.; Hao, X.-Q.; Liu, Z.-J.; Zheng, X.-X.; Zhang, S.-K.; Niu, J.-L.; Song,
 M.-P. Angew. Chem., Int. Ed. 2015, 54, 10012–10015.

[5] Li, L.; Wang, M.; Zhang, X.; Jiang, Y.; Ma, D. Org. Lett. 2009, 11, 1309–1312.

¹H-NMR, ¹³C-NMR, ¹⁹F-NMR Spectrum

.00 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 -260 -280 -31 f1 (ppm)

S-56

.00 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 -260 -34 f1 (ppm)

-94 -98 -102 -106 -110 -114 -118 -122 -126 -130 -134 -138 -142 -146 -150 -154 -15 f1 (ppm)

S-65

S-68

00 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 -260 -280 -3 f1 (ppm)

00 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 -260 -280 -3 f1 (ppm)

9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 f1 (ppm)

S-82

