Supporting Information

For

Design and Synthesis of Nitro Containing Cage Heterocycles as High-Density Materials Derived from Pentacycloundecane (PCUD) Systems

Sambasivarao Kotha*, Mohammad Salman, Subba Rao Cheekatla and Saima Ansari

Department of Chemistry, Indian Institute of Technology-Bombay, Powai, India, 400076, Phone: +91(22)-2576 7160, E-mail: <u>srk@chem.iitb.ac.in</u>

Table of Contents

Ent	ry Contents	Page No.
1.	Experimental procedures and characterization data	S2-S10
2.	X-Ray data and refinement parameters for target compounds	S11-S13
3.	Plots of ¹ H NMR, ¹³ C NMR and ¹³⁵ DEPT of all compounds	S14-S43
4.	References	S44

Experimental Section

General Remarks:

All the reactions were monitored by thin layer chromatography (TLC) using appropriate solvent systems. Reactions involving oxygen-sensitive reagents or catalysts were performed in degassed solvents. Anhydrous ethyl acetate, methanol, and dichloromethane were obtained by distillation from sodium benzophenone immediately prior to use. Dichloromethane (CH₂Cl₂) and was distilled from CaH₂. Sodium sulphate was dried in an oven at 130 °C for 1 d. All solvent extracts were washed successively with water and brine (aq. sat. NaCl solution), dried with anhyd. Na₂SO₄, and concentrated at reduced pressure in a rotary evaporator. Yields refer to the chromatographically isolated samples. All the commercial grade reagents such as dicyclopentadiene, hydroquinone, nitromethane and sodium methoxide were used without further purification. NMR samples were generally analysed in CDCl₃ solvent, and chemical shifts are reported in δ values using tetramethylsilane (TMS) as an internal standard. The standard abbreviation s, bs, d, t, q, quint, sext, sept and m, refer to singlet, broad singlet, doublet, triplet, quartet, quintet, sextet, septet, and multiplet, respectively. Coupling constants (J) are reported in Hz. All ¹H NMR and ¹³C NMR spectroscopic data were recorded with Bruker (AVANCE IIITM) 500 MHz and Bruker (AVANCE IIITM) 400 MHz spectrometers. High-resolution mass spectrometry (HRMS) measurements of unknown compounds were done by using Bruker (Maxis Impact)/Micromass Q-ToF spectrometers and Agilent (AdvanceBio 6545XT LC/Q-TOF). The melting points (M.P.'s) of solid compounds were obtained from a Buchi 560 melting point apparatus and are uncorrected. X-ray diffraction data were collected on a Bruker D8 QUEST (APEX-II CCD) diffractometer by using Mo K α ($\lambda = 0.71073$)/Cu K α $(\lambda = 1.54184).$

General Experimental Procedure for [2+2] Photocycloaddition: Synthesis of Cage Diones Under UV Irradiation (125 W Hg Lamp)

All cage diones **11**, **12**, **13**, **14**, **15**, **16**, **17**, and **18** were prepared based on known literature methods using respective Diels-Alder (DA) adducts under UV irradiation from 125 W Hg lamp for 30–60 min with Pyrex immersion well in dry ethyl acetate solvent. ^[1–7]

General Procedures and Characterisation Data for All (Known/New) Compounds

To a precooled (0°C) solution of methanol (5 ml) in two necks round bottom flask, sodium methoxide (4.0 equiv.) was added. Later, nitromethane (excess) was added dropwise with constant stirring. After 5 min, pentacyclic dione (200 mg, 1.0 equiv.) was added. After the addition of pentacyclic dione had been completed, the reaction mixture was allowed to stir for 2 h at room temperature. Then, water was added to the reaction mixture and the resulting mixture was extracted with methylene chloride (3×10 ml). The combined organic extracts were washed with water, dried (sodium sulphate) and filtered and the compound was obtained by drying under reduced pressure.

Preparation of nitro compounds 11a, 11b, and 11c

Prepared according to the above general procedure using cage dione **11** (200 mg, 1.14 mmol). Column chromatography (5% ethyl acetate in petroleum ether) afforded the pure liquid cage compound **11a**. Colourless liquid; Yield: 94 mg (33%).

¹H NMR (500 MHz, CDCl₃): δ 4.74 (d, J = 0.4 Hz, 2H), 3.45 (s, 3H), 2.83-2.90 (m, 4H), 2.69-2.75 (m, 2H), 2.50-2.58 (m, 2H), 1.92 (d, J =10.7 Hz, 1H), 1.58 (d, J = 10.7 Hz, 1H) ppm. ¹³C NMR (125 MHz, CDCl₃): δ 122.58, 87.89, 77.35, 57.29, 54.42, 53.79, 47.22, 45.05, 43.68, 43.61, 43.56, 42.03, 41.68 ppm. HRMS (ESI) m/z: calculated for C₁₃H₁₆NO₄ [M+H]⁺: 250.1076; found 250.1075.

Continued elution of the column chromatography (5% ethyl acetate in petroleum ether) afforded the pure solid cage compound **11b**.Colourless crystalline solid; Yield: 73 mg (23%); M.P. 108-110 $^{\circ}$ C

¹H NMR (500 MHz, CDCl₃): δ 4.79 (s, 4H), 2.92 (t, *J* = 3.2 Hz, 2H), 2.85 (s, 2H), 2.75 (m, 2H), 2.53 (d, *J* = 1.3 Hz, 2H), 1.98 (d, *J* = 10.8 Hz, 1H), 1.62 (d, *J* = 10.8 Hz, 1H) ppm. ¹³C NMR (125 MHz, CDCl₃): δ 93.40, 76.76, 57.98, 47.40, 44.52, 43.88, 41.76 ppm. HRMS (ESI) m/z: calculated for C₁₃H₁₄NaN₂O₅ [M+Na]⁺: 301.0793; found 301.0793.

Further elution of the column chromatography (12-15% ethyl acetate in petroleum ether) afforded the pure solid cage compound **11c**. Colourless microcrystalline solid; Yield: 110 mg (41%); M.P. 134-136 °C

¹H NMR (400 MHz, CDCl₃): δ 4.74 (s, 2H), 4.34 (bs, 1H), 2.86-2.90 (m, 2H), 2.80-2.83 (m, 2H), 2.67-2.68 (m, 3H), 2.50 (t, J = 4.92 Hz, 1H), 1.92 (d, J = 10.8 Hz, 1H), 1.58 (d, J = 10.8 Hz, 1H) ppm. ¹³C NMR (100.6 **MHz**, **CDCl**₃): δ 119.27, 88.36, 77.09, 57.65, 57.30, 47.68, 47.24, 44.96,

43.87, 43.64, 42.17, 41.82 ppm. HRMS (ESI) m/z: calculated for C₁₂H₁₄NO₄ [M+H]⁺: 236.0913; found 236.0912

Preparation of nitro compound 12c

Prepared according to the above general procedure using cage dione 12 (200 mg, 1.13 mmol). Column chromatography (20% ethyl acetate in petroleum ether) afforded the pure solid cage compound 12c. Colourless crystalline solid; Yield: 215 mg (80%); M.P. 108-110 °C

¹**H NMR (400 MHz, CDCl₃):** δ 4.66 (d, J = 11.6 Hz, 1H), 4.60 (d, J = 11.6 Hz, 1H), 3.17 (d, J = 24.2 Hz, 1H), 2.97 (d, J = 4.6 Hz, 1H), 2.49-2.53 (m, 2H), 2.32 (s, 1H), 2.28 (s, 1H), 2.14 (d, J = 13.6 Hz, 1H), 2.02 (d, J = 13.6 Hz, 1H), 1.77-1.82 (m, 2H), 1.65-1.73 (m, 2H) ppm. ¹³C NMR (100.6

CH₃

ОМе

OН

11c

O₂Ń

MHz, CDCl₃): δ 116.26, 87.70, 80.69, 59.48, 56.60, 49.17, 47.71, 43.10, 42.45, 41.72, 40.79, 37.85 ppm. **HRMS (ESI) m/z:** calculated for C₁₂H₁₅NaNO₄ [M+Na]⁺: 260.0896; found 260.0896.

Preparation of nitro compounds 13a, 13b, and 13c

Prepared according to the above general procedure using cage dione 13 (200 mg, 0.876 mmol). Column chromatography (5% ethyl acetate in petroleum ether) afforded the pure solid cage compound **13a**. White solid; Yield: 80 mg (30%); M.P. 96-98 °C

¹**H NMR (400 MHz, CDCl₃):** δ 4.71 (d, J = 11.8 Hz, 1H), 4.54 (d, J =11.8 Hz, 1H), 3.49 (s, 3H), 3.11-3.13 (m, 2H), 2.46-2.47 (m, 2H), 1.85 (d, J = 2.2 Hz, 2H), 1.0 (s, 3H), 0.93 (s, 3H), 0.48-.51 (m, 2H), 0.31-.35(m, 2H) ppm. ¹³C NMR (100.6 MHz, CDCl₃): δ 120.64, 87.57, 75.87, O_2N 56.58, 55.28, 54.25, 53.71, 50.56, 50.03, 48.62, 47.00, 46.33, 40.21, 13a 12.54, 11.24, 5.26, 5.13 ppm. **HRMS (ESI) m/z:** calculated for C₁₇H₂₂NO₄ [M+H]⁺: 304.1549; found 304.1548.

Continued elution of the column chromatography (5% ethyl acetate in petroleum ether) afforded the pure sticky solid cage compound **13b**. off White sticky solid; Yield: 15 mg (5%).

¹H NMR (400 MHz, CDCl₃): δ 4.76 (d, J = 12.4 Hz, 2H), 4.62 (d, J = 12.4 Hz, 2H), 3.33-

3.36 (m, 1H), 3.11-3.16 (m, 2H), 2.93-2.95 (m, 1H), 2.46-2.58 (m, 1H), 2.09 (t, J = 4.4 Hz, 1H), 1.23 (s, 3H), 1.05 (s, 3H), 0.51-.58 (m, 2H), 0.32-.39 (m, 2H) ppm. **HRMS (ESI) m/z:** calculated for C₁₇H₂₀NaN₂O₅ [M+Na]⁺: 355.1264; found 355.1264.

Further elution of the column chromatography (15% ethyl acetate in petroleum ether) afforded the pure solid cage compound **13c**. Colourless crystalline solid; Yield: 81 mg (32%); M.P. 164-166 °C

¹**H NMR (400 MHz, CDCl₃):** δ 4.70 (d, J = 11.8 Hz, 1H), 4.52 (d, J = 11.8 Hz, 1H), 3.57 (s,

1H), 3.12-3.17 (m, 1H), 2.79-2.84 (m, 2H), 2.47-2.52 (m, 2H), 1.95 (t, J = 4.8 Hz, 1H), 1.85 (t, J = 4.8 Hz, 1H), 1.0 (s, 3H), 0.98 (s, 3H), 0.48-.52 (m, 2H), 0.32-.34 (m, 2H) ppm. ¹³C NMR (100.6 MHz, CDCl₃): δ 117.55, 88.06, 75.80, 57.92, 56.74, 55.37, 52.99, 49.90, 48.46, 46.86, 46.85, 40.12, 12.49, 10.95, 5.24, 5.09 ppm. HRMS (ESI) m/z: calculated for C₁₆H₂₀NO₄ [M+H]⁺: 290.1391; found 290.1391.

Preparation of nitro compounds 14a, 14b, and 14c

Prepared according to the above general procedure using cage dione **14** (200 mg, 0.876 mmol). Column chromatography (5% ethyl acetate in petroleum ether) afforded the pure liquid cage compound **14a**. Viscous liquid; Yield: 93 mg (35%).

¹H NMR (400 MHz, CDCl₃): δ 4.73 (d, J = 1.0 Hz, 2H), 3.45 (s, 3H), 2.78-2.91 (m, 6H), 2.16-

2.18 (m, 1H), 2.08-2.10 (m, 1H), 1.32-1.59 (m, 8H) ppm. ¹³C NMR (100.6 MHz, CDCl₃): δ 122.54, 87.85, 77.40, 68.75, 56.95, 54.11, 53.78, 53.00, 51.49, 47.11, 43.46, 42.08, 41.69, 33.19, 31.07, 25.67, 25.39 ppm. HRMS (ESI) m/z: calculated for C₁₇H₂₂NO₄ [M+H]⁺: 304.1546; found 304.1545. Continued elution of the column chromatography (5% ethyl acetate in

petroleum ether) afforded the pure solid cage compound **14b**. Colourless crystalline solid; Yield: 52 mg (18%); M.P. 98-100 °C

¹**H NMR (400 MHz, CDCl₃):** δ 4.78 (d, J = 0.5 Hz, 4H), 2.91-2.93 (m, 4H), 2.83-2.84 (m, 2H), 2.12-2.14 (m, 2H) 1.50-1.59 (m, 6H), 1.30-1.33 (m, 2H) ppm. ¹³C NMR (100.6 MHz, CDCl₃): δ 93.35, 76.83, 69.11, 57.63, 52.43, 47.54, 41.79, 33.15, 31.23, 25.67, 25.35 ppm. HRMS (ESI) **m/z:** calculated for C₁₇H₂₀NaN₂O₅ [M+Na]⁺: 355.1249; found 355.1249.

Further elution of the column chromatography (12-15% ethyl acetate in petroleum ether) afforded the pure solid cage compound 14c. Off white solid; Yield: 99 mg (39%); M.P. 102-104 °C

¹H NMR (400 MHz, CDCl₃): δ 4.87 (bs, 1H), 4.71 (s, 2H), 2.72-2.77 (m, 2H), 2.62-2.66 (m, 2H), 2.25-2.28 (m, 2H), 2.07-2.15 (m, 2H), 1.49-1.59 (m, 6H), 1.30-1.33 (m, 2H) ppm. ¹³C NMR (100.6 MHz, CDCl₃): δ 119.27, 88.27, 77.04, 68.65, 57.19, 56.80, 52.84, 51.71, 47.31, 46.99, 42.09, 41.79, 33.09, 31.00, 25.60, 25.33 ppm. HRMS (ESI) m/z: calculated for C₁₆H₂₀NO₄ [M+H]⁺: 312.1207; found 312.1207.

Preparation of nitro compounds 15a, 15b, and 15c

Prepared according to the above general procedure using cage dione 15 (200 mg, 0.998 mmol). Column chromatography (5% ethyl acetate in petroleum ether) afforded the pure liquid cage compound **15a**. Colourless viscous liquid; Yield: 91 mg (33%).

¹**H NMR (400 MHz, CDCl₃):** δ 4.73 (d, J = 1.4 Hz, 2H), 3.45 (s, 2H), 3.0 (s, 2H), 2.85-2.91 (m, 4H), 1.84 (m, 2H), 0.50-.54 (m, 2H), 0.33-.37 (m, 2H) ppm. ¹³C NMR (100.6 MHz, CDCl₃): δ 122.48, 87.78 77.32, 57.21, 54.32, 53.75, 51.25, 49.71, 47.65, 44.07, 42.25, 41.83, 39.97, 5.30, 5.16 ppm. **HRMS (ESI)** m/z: calculated for C₁₅H₁₈NO₄ [M+H]⁺: 276.1232; found 276.1232.

Continued elution of the column chromatography (5% ethyl acetate in petroleum ether) afforded the pure solid cage compound **15b**. Colourless crystalline solid; Yield: 85 mg (28%); M.P. 146-148 °C

¹**H NMR (500 MHz, CDCl₃):** δ 4.79 (d, J =1.4 Hz, 4H), 3.0 (s, 2H), 2.92-2.95 (m, 4H), 1.89 (s, 2H), 0.53-.56 (m, 2H), 0.35-.39 (m, 2H) ppm. ¹³C NMR (125 MHz, CDCl₃): δ 93.30, 76.80, 57.98, 50.73, 48.16, 41.99, 40.15, 5.33, 5.28 ppm. **HRMS (ESI)** m/z: calculated for C₁₅H₁₆NaN₂O₅ O₂N [M+Na]⁺: 327.0951; found 327.0951.

 $O_2 \dot{N}$ 14c

NO2

15b

Further elution of the column chromatography (15% ethyl acetate in petroleum ether) afforded the pure solid cage compound **15c**. White colour solid; Yield: 94 mg (36%); M.P. 120-122 °C

¹H NMR (400 MHz, CDCl₃): δ 4.70 (s, 2H), 3.04 (bs, 1H), 2.89-3.03 (m, 4H), 2.81-2.86 (m, 1H), 2.68-2.72 (m, 1H), 2.03 (t, *J* = 4.7 Hz, 1H), 1.89 (t, *J* = 4.64 Hz, 1H), 0.51-.57 (m, 2H), 0.36-.43 (m, 2H) ppm. ¹³C NMR (100.6 MHz, DMSO-d₆): δ 118.29, 87.40 76.88, 56.78, 56.37, 50.27, 49.31, 47.20, 47.14, 46.66, 41.57, 41.53, 5.05, 4.91 ppm. HRMS (ESI) m/z: calculated for C₁₄H₁₆NO₄ [M+H]⁺: 262.1087; found 262.1087.

Preparation of nitro compounds 16a, 16b, and 16c

Prepared according to the above general procedure using cage dione **16** (200 mg, 0.988 mmol). Column chromatography (5% ethyl acetate in petroleum ether) afforded the pure liquid cage compound **16a**. Colourless viscous liquid; Yield: 100 mg (36%).

¹H NMR (400 MHz, CDCl₃): δ 4.68 (d, J = 11.6 Hz, 1H), 4.54 (d, J = 11.6 Hz, 1H) 3.47 (s, 3H), 2.92 (s, 2H), 2.50 (t, J = 1.52 Hz, 2H), 2.27-2.29 (m, 2H), 1.89 (d, J = 10.5 Hz, 1H), 1.54 (d, J = 10.5 Hz, 1H), 0.98 (s, 3H), 0.92 (s, 3H) ppm. ¹³C NMR (100.6 MHz, CDCl₃): δ 120.63,

87.56, 75.87, 56.48, 54.90, 53.83, 53.68, 50.47, 46.75, 46.12, 43.90, 43.73, 42.41, 12.46, 11.19 ppm. **HRMS (ESI) m/z:** calculated for C₁₅H₂₀NO₄ [M+H]⁺: 278.1394; found 278.1393.

Continued elution of the column chromatography (5% ethyl acetate in petroleum ether) afforded the pure colourless

crystalline solid cage compound **16b**. Colourless crystalline solid; Yield: 24 mg (8%); M.P. 146-148 °C

¹H NMR (400 MHz, CDCl₃): δ 4.73 (d, *J*= 12.0 Hz, 2H), 4.61 (d, *J*= 12.0 Hz, 2H), 2.93-3.00 (m, 2H), 2.52-2.57 (m, 2H), 2.35-2.40 (m, 2H), 1.93-2.00 (m, 1H), 1.59-1.63 (m, 1H), 1.03 (s, 6H) ppm. ¹³C NMR (100.6)

MHz, CDCl₃): δ 93.38, 75.43, 61.35, 57.19, 55.95, 46.59, 43.95, 43.40,

12.40 ppm. **HRMS (ESI) m/z:** calculated for $C_{15}H_{19}N_2O_5$ [M+H]⁺: 329.1106; found 329.1105. Further elution of the column chromatography (12-15% ethyl acetate in petroleum ether) afforded the pure colourless crystalline solid cage compound **16c**. Colourless crystalline solid; Yield: 105 mg (40%); M.P. 144-146 °C

¹**H NMR (400 MHz, DMSO-d**₆): δ 4.75 (d, J = 12.0 Hz, 1H), 4.57 (d, J= 12.0 Hz, 1H), 2.73-2.77 (m, 1H), 2.32-2.44 (m, 3H), 2.12 (s, 1H), 1.71 (d, J = 10.2 Hz, 1H), 1.35 (d, J = 10.2 Hz, 1H), 0.78 (s, 3H), 0.74 (s, 3H)O₂Ń ppm. ¹³C NMR (100.6 MHz, DMSO-d₆): δ 116.91, 87.14, 76.01, 56.93, 55.71, 54.33, 52.00, 46.20, 43.27, 42.78, 41.76, 12.08, 11.33 ppm. HRMS (ESI) m/z:

Preparation of nitro compounds 17a, 17b, and 17c

calculated for C₁₄H₁₈NO₄ [M+H]⁺: 264.1230; found 264.1229.

Prepared according to the above general procedure using cage dione 17 (200 mg, 0.876 mmol). Column chromatography (5% ethyl acetate in petroleum ether) afforded the pure solid cage compound 17a. Colourless crystalline solid; Yield: 98 mg (37%); M.P. 98-100 °C

¹**H NMR (400 MHz, CDCl₃):** δ 4.72 (d, J = 11.72 Hz, 1H), 4.56 (d, J =11.72 Hz, 1H), 3.48 (s, 3H), 2.92-2.95 (m, 2H), 2.49-2.51 (m, 4H), 1.90-1.93 (d, J = 10.6 Hz, 1H), 1.57-1.60 (m, 8H), 1.46 (m, 1H) ppm. ¹³C NMR (**100.6 MHz, CDCl₃**): δ 121.07, 87.80, 75.65, 56.74, 54.40, 53.75, 52.32, 50.67, 44.18, 43.94, 43.80, 42.51, 21.63, 19.69, 17.77, 17.18 ppm. HRMS (ESI) m/z: calculated for $C_{17}H_{21}KN_2O_5 [M+K]^+$: 342.1102; found 342.1106.

¹**H NMR (400 MHz, CDCl₃):** δ 4.73 (d, J = 11.92 Hz, 2H), 4.61 (d, J =

11.92 Hz, 2H), 2.92-2.98 (m, 2H), 2.50-2.59 (m, 4H), 1.95-1.97 (d, J =

10.8 Hz, 1H), 1.60-1.66 (m, 6H), 1.49-1.53 (m, 2H), 1.40-1.45 (m, 1H)

ppm. ¹³C NMR (100.6 MHz, CDCl₃): 8 93.37, 75.05, 57.31, 55.15, 43.97,

43.37, 43.22, 20.25, 16.49 ppm. HRMS (ESI) m/z: calculated for

Continued elution of the column chromatography (5% ethyl acetate in petroleum ether) afforded the pure solid cage compound **17b**. Colourless crystalline solid; Yield: 58 mg (20%); M.P. 122-124 °C

C₁₇H₂₀NaN₂O₅ [M+Na]⁺: 355.1264; found 355.1264. Further elution of the column chromatography (12-15% ethyl acetate in petroleum ether) afforded the pure solid cage compound 17c. Colourless crystalline; Yield: 96 mg (38%); M.P. 156-158 °C

¹**H NMR (400 MHz, DMSO-d₆):** δ 4.73 (d, J = 12.1 Hz, 1H), 4.61 (d, J = 12.1 Hz, 1H), 2.71-2.75 (m, 1H), 2.40-2.46 (m, 2H), 2.32-2.34 (m, 3H) 1.73 (d, J = 10.2, 1H), 1.37-1.41 (m, 6H), 1.19-1.22 (m, 2H) ppm. ¹³C NMR (**100.6 MHz, DMSO-d**₆): δ 117.15, 87.28, 75.76, 56.96, 55.89, 53.88, 50.39,

NO₂

NO2

17b

43.90, 43.59, 43.28, 42.82, 41.83, 21.01, 19.75, 17.44, 17.05 ppm. **HRMS (ESI) m/z:** calculated for $C_{16}H_{20}NO_4 [M+H]^+$: 290.1376; found 290.1375.

Preparation of nitro compounds 18a, 18b, and 18c

Prepared according to the above general procedure using cage dione **18** (200 mg, 0.891 mmol). Column chromatography (5% ethyl acetate in petroleum ether) afforded the pure solid cage compound **18a**. Colourless crystalline solid; Yield: 72 mg (27%); M.P. 134-136 °C

¹H NMR (400 MHz, CDCl₃): δ 5.82-5.92 (m, 2H), 5.47-5.59 (m, 2H),
4.76 (d, J=11.9 Hz, 1H), 4.69 (d, J=11.96 Hz, 1H), 3.52 (s, 3H), 3.00-3.04 (m, 2H), 2.86-2.92 (m, 2H), 1.83 (d, J = 10.7 Hz, 1H), 1.44 (d, J = 10.7 Hz,
1H) ppm. ¹³C NMR (100.6 MHz, CDCl₃): δ 125.60, 123.03, 122.72,
122.08, 120.09, 90.74, 75.05, 57.16, 55.46, 54.47, 53.99, 53.96, 53.48,

51.54, 44.79, 43.14, 42.00 ppm. **HRMS (ESI) m/z:** calculated for C₁₇H₁₈NO₄ [M+H]⁺: 322.1049; found 322.1049.

Continued elution of the column chromatography (5% ethyl acetate in petroleum ether) afforded the pure solid cage compound **18b**. Colourless crystalline solid; Yield: 44 mg (15%); M.P. 124-126 $^{\circ}$ C

¹H NMR (400 MHz, CDCl₃): δ 5.89-5.93 (m, 2H), 5.55-5.57 (m, 2H), 4.77 (d, J = 12.1 Hz, 2H), 4.72 (d, J = 12.1 Hz, 2H), 3.02 (d, J = 1.76 Hz, 2H), 2.95 (t, J = 1.56 Hz, 2H), 2.58-2.63 (m, 2H), 1.87 (d, J = 10.9 Hz, 1H), 1.45 (d, J = 10.9 Hz, 1H) ppm. ¹³C NMR (100.6 MHz, CDCl₃): δ 125.11, 120.89, 95.98, 74.77, 58.00, 56.53, 54.31, 44.39, 41.96 ppm. HRMS (ESI) m/z: calculated for C₁₇H₁₆NaN₂O₅ [M+Na]⁺: 351.0955; found 351.0955.

Further elution of the column chromatography (12-15% ethyl acetate in petroleum ether) afforded the pure solid cage compound **18c**. Colourless crystalline solid; Yield: 99 mg (39%); M.P. 152-154 $^{\circ}$ C

¹H NMR (400 MHz, CDCl₃): δ 5.89-5.92 (m, 2H), 5.47-5.56 (m, 2H), 4.75 (d, J = 12.0 Hz, 1H), 4.66 (d, J = 12.0 Hz, 1H), 3.44 (bs, 1H), 3.02-3.07 (m, 1H), 2.91-2.96 (m, 2H), 2.76-2.81 (m, 1H), 2.71 (t, J = 4.7 Hz, 1H), 2.56 (t, J = 4.8 Hz, 1H), 1.82 (d, J = 10.8 Hz, 1H), 1.42 (d, J = 10.8 Hz, 1H) ppm. ¹³C NMR (100.6 MHz, CDCl₃): δ 125.53, 125.10, 120.63, 120.28, 119.42,

91.28, 75.06, 58.21, 57.34, 55.76, 54.42, 54.38, 53.07, 44.64, 43.07, 41.90 ppm. **HRMS (ESI) m/z:** calculated for C₁₆H₁₅NaNO₄ [M+Na]⁺: 308.0893; found 308.0893.

(1R,2R,2aR,4S,9S,10S)-1-methoxy-10-(nitromethyl)-2,2a,2a1,3,4,4a-hexahydro-1H-1,4b,2,4-(epoxyethane[1,1,2,2]tetrayl)benzo[1,4]cyclobuta[1,2,3-cd]pentalene (18a) CCDC (2174597)

Table S1.	X-ray cr	ystallograph	c data and	l refinement	parameters	for 18a	(CCDC 2174597)
-----------	----------	--------------	------------	--------------	------------	----------------	----------------

SRK-MDS-32A_Mo
$C_{17}H_{17}NO_4$
299.31
150
orthorhombic
Pbca
12.2844(15)
9.1450(8)
24.787(2)
90
90
90
2784.6(5)
8
1.428
0.102
1264.0
$0.156 \times 0.118 \times 0.032$
Mo Ka ($\lambda = 0.71073$)
3.286 to 49.99
$-14 \le h \le 11, -10 \le k \le 10, -29 \le l \le 29$
10475
2454 [$R_{int} = 0.1481$, $R_{sigma} = 0.1247$]
2454/0/200
1.068
$R_1 = 0.0760, wR_2 = 0.1612$
$R_1 = 0.1404, wR_2 = 0.2125$
0.38/-0.44

(1'R,2a'S,2a1'R,4a'R,6'S,6a'S)-1',2a'-bis(nitromethyl)hexahydro-1'H,3'Hspiro[cyclopentane-1,5'-[1,3,4,6](epiethane[1,1,2,2]tetrayl)pentaleno[1,6-bc]furan] (14b) CCDC (2174974)

Table S1. X-ray crystallographic data and refinement parameters for 14b (CCDC 2174974)

Identification code	SRK_MDS_115C_1_autored
Empirical formula	$C_{17}H_{20}N_2O_5$
Formula weight	332.35
Temperature/K	100.00(10)
Crystal system	monoclinic
Space group	$P2_1/c$
a/Å	12.3658(4)
b/Å	10.8470(2)
c/Å	11.7593(4)
α'°	90
β/°	109.713(3)
$\gamma^{\prime \circ}$	90
Volume/Å ³	1484.86(8)
Z	4
$\rho_{calc}g/cm^3$	1.487
μ/mm^{-1}	0.110
F(000)	704.0
Crystal size/mm ³	$0.876 \times 0.582 \times 0.485$
Radiation	Mo Ka ($\lambda = 0.71073$)
2Θ range for data collection/°	5.134 to 74.476
Index ranges	$-17 \le h \le 19, -17 \le k \le 17, -19 \le l \le 16$
Reflections collected	37476
Independent reflections	6540 [$R_{int} = 0.0487$, $R_{sigma} = 0.0522$]
Data/restraints/parameters	6540/0/217
Goodness-of-fit on F ²	1.042
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0479, wR_2 = 0.1101$
Final R indexes [all data]	$R_1 = 0.0772, wR_2 = 0.1232$
Largest diff. peak/hole / e Å ⁻³	0.48/-0.31

(1R,2R,2aR,4S,9S,10S)-10-(nitromethyl)-2,2a,2a1,3,4,4a-hexahydro-1H-1,4b,2,4-(epoxyethane[1,1,2,2]tetrayl)benzo[1,4]cyclobuta[1,2,3-cd]pentalen-1-ol (18c) CCDC (2175009)

Table S1. X-ra	y crystallograp	hic data and	refinement	parameters f	for 18c ((CCDC 2175009)
----------------	-----------------	--------------	------------	--------------	------------------	----------------

Identification code	SRK_MDS_119E_01_autored
Empirical formula	$C_{64}H_{60}N_4O_{16}$
Formula weight	1141.16
Temperature/K	100.00(10)
Crystal system	triclinic
Space group	P-1
a/Å	9.9853(11)
b/Å	14.012(2)
c/Å	19.196(2)
α/°	70.016(12)
β/°	89.958(10)
$\gamma/^{\circ}$	82.431(10)
Volume/Å ³	2499.2(6)
Z	2
$\rho_{calc}g/cm^3$	1.516
μ/mm^{-1}	0.110
F (000)	1200.0
Crystal size/mm ³	$0.485\times0.246\times0.0132$
Radiation	Mo Ka ($\lambda = 0.71073$)
2Θ range for data collection/°	3.162 to 49.994
Index ranges	$-11 \le h \le 11, -16 \le k \le 16, -22 \le l \le 22$
Reflections collected	50004
Independent reflections	8794 [$R_{int} = 0.1024, R_{sigma} = 0.0777$]
Data/restraints/parameters	8794/0/761
Goodness-of-fit on F ²	0.951
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0479, wR_2 = 0.1165$
Final R indexes [all data]	$R_1 = 0.1249, wR_2 = 0.1585$
Largest diff. peak/hole / e Å ⁻³	0.32/-0.36

¹H NMR of Compound 11a (500 MHz, CDCl₃)

¹³C NMR of Compound 11a (125 MHz, CDCl₃)

DEPT 135 NMR of Compound 11a (125 MHz, CDCl₃)

¹H NMR of Compound 11b (500 MHz, CDCl₃)

¹³C NMR of Compound 11b (125 MHz, CDCl₃)

DEPT 135 NMR of Compound 11b (125 MHz, CDCl₃)

¹H NMR of Compound 11c (400 MHz, CDCl₃)

¹³C NMR of Compound 11c (100.6 MHz, CDCl₃)

DEPT 135 NMR of Compound 11c (100.6 MHz, CDCl₃)

¹H NMR of Compound 12c (400 MHz, CDCl₃)

¹³C NMR of Compound 12c (100.6 MHz, CDCl₃)

¹H NMR of Compound 13a (400 MHz, CDCl₃)

¹³C NMR of Compound 13a (100.6 MHz, CDCl₃)

DEPT 135 NMR of Compound 13a (100.6 MHz, CDCl₃)

¹H NMR of Compound 13b (400 MHz, CDCl₃)

¹H NMR of Compound 13c (400 MHz, CDCl₃)

¹³C NMR of Compound 13c (100.6 MHz, CDCl₃)

DEPT 135 NMR of Compound 13c (100.6 MHz, CDCl₃)

¹H NMR of Compound 14a (400 MHz, CDCl₃)

¹³C NMR of Compound 14a (100.6 MHz, CDCl₃)

DEPT 135 NMR of Compound 14a (100.6 MHz, CDCl₃)

¹H NMR of Compound 14b (400 MHz, CDCl₃)

¹³C NMR of Compound 14b (100.6 MHz, CDCl₃)

¹H NMR of Compound 14c (400 MHz, CDCl₃)

¹³C NMR of Compound 14c (100.6 MHz, CDCl₃)

¹H NMR of Compound 15a (400 MHz, CDCl₃)

¹³C NMR of Compound 15a (100.6 MHz, CDCl₃)

DEPT 135 NMR of Compound 15a (100.6 MHz, CDCl₃)

¹H NMR of Compound 15b (500 MHz, CDCl₃)

98 73 16 99 30 45 20 94 80 -5.33 AME SRK-MDS-126B-01-13C NAME EXPNO PROCNO 57. 50. 48. 41. 93. 77. 77. 76. 2 N/ N/ F2 - Acquisition Paramet Date_ 20210909 Time 8.46 INSTRUM spect PROBHD 5 mm PABBO BB/ meters ROBHD ULPROG zgpg30 65536 CDC13 58 0 D OLVENT IS IS 29761.904 Hz 0.454131 Hz 1.1010048 sec 197.27 16.800 usec 6.50 usec 297.4 K 1.00000000 sec 0.03000000 sec 1 SWH Ω $O_2 \dot{N}$ Q ΝO₂ SF01 NUC1 13C 8.90 usec 103.0000000 W P1 PLW1 CHANNEL f2 ------500.1320005 MHz 1H waltz16 80.00 usec 16.0000000 W 0.44556001 W 0.22411001 W FO2 AUC2 CPDPRG[2 PCPD2 PLW2 PLW12 PLW13 PLW13 2 - Processing parameters II 32768 IF 125.7577688 MHz IDW EM SI SF WDW SSB LB GB 0 1.00 Hz 0 1.40 210 200 190 180 170 160 150 140 130 120 110 100 90 80 10 0 ppm 70 60 50 40 30 20

¹³C NMR of Compound 15b (125 MHz, CDCl₃)

¹H NMR of Compound 15c (400 MHz, CDCl₃)

¹³C NMR of Compound 15c (100.6 MHz, DMSO-d₆)

¹H NMR of Compound 16a (400 MHz, CDCl₃)

¹³C NMR of Compound 16a (100.6 MHz, CDCl₃)

DEPT 135 NMR of Compound 16a (100.6 MHz, CDCl₃)

¹H NMR of Compound 16b (400 MHz, CDCl₃)

¹³C NMR of Compound 16b (100.6 MHz, CDCl₃)

DEPT 135 NMR of Compound 16b (100.6 MHz, CDCl₃)

¹H NMR of Compound 16c (400 MHz, DMSO-d₆)

¹³C NMR of Compound 16c (100.6 MHz, DMSO-d₆)

DEPT 135 NMR of Compound 16c (100.6 MHz, DMSO-d₆)

¹H NMR of Compound 17a (400 MHz, CDCl₃)

¹³C NMR of Compound 17a (100.6 MHz, CDCl₃)

DEPT 135 NMR of Compound 17a (100.6 MHz, CDCl₃)

¹H NMR of Compound 17b (400 MHz, CDCl₃)

¹³C NMR of Compound 17b (100.6 MHz, CDCl₃)

DEPT 135 NMR of Compound 17b (100.6 MHz, CDCl₃)

¹H NMR of Compound 17c (400 MHz, DMSO-d₆)

¹³C NMR of Compound 17c (100.6 MHz, DMSO-d₆)

DEPT 135 NMR of Compound 17c (100.6 MHz, DMSO-d₆)

¹H NMR of Compound 18a (400 MHz, CDCl₃)

¹³C NMR of Compound 18a (100.6 MHz, CDCl₃)

DEPT 135 NMR of Compound 18a (100.6 MHz, CDCl₃)

¹H NMR of Compound 18b (400 MHz, CDCl₃)

¹³C NMR of Compound 18b (100.6 MHz, CDCl₃)

¹H NMR of Compound 18c (400 MHz, CDCl₃)

¹³C NMR of Compound 18c (100.6 MHz, CDCl₃)

DEPT 135 NMR of Compound 18c (100.6 MHz, CDCl₃)

References

- (a) Cookson, R. C.; Crundwell, E.; Hill, R. R.; Hudec, J. J. Chem. Soc. 1964, 3062. (b) Mehta, G.; Kotha, S. J. Org. Chem. 1985, 50, 5537.
- 2. Wenkert, E.; Yoder, J.E. J. Org. Chem., 1970, 35, 2986.
- 3. Mehta, G.; Srikrishna, A.; Reddy, A. V.; Nair, M. S. Tetrahedron 1981, 37, 4543.
- 4. Kushner, A. S. Tetrahedron Lett. 1971, 35, 3275.
- 5. Singh, V. K.; Raju, B. N. S.; Deota, P. T. Synth. Commun. 1986, 16, 1731.
- 6. Singh, V. K.; Raju, B. N. S.; Deota, P. T. Synth. Commun. 1987, 17, 593.
- 7. Kotha, S.; Cheekatla, S. R. Tetrahedron 2020, 76, 130898.