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Abstract 

Novel multistage redox TTFs bearing 6-aryl-1,4-dithiafulvene moieties were 

synthesized by using the palladium-catalyzed direct C-H arylation. In the presence of 

a catalytic amount of Pd(OAc)2, PtBu3•HBF4, and excess amount of Cs2CO3, the C-H 

arylation of TTF with several aryl bromides bearing 1,3-dithiol-2-ylidenes took place 

efficiently to produce the corresponding -conjugation molecules. We also succeeded 

in estimation of the oxidation potentials and number of electrons involved in each 

oxidation step of the obtained compounds by the digital simulations. 
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Introduction 

Tetrathiafulvalene (TTF) with extended -conjugation have attracted attention as 

possible components for functional materials such as molecular conductors, field-effect 

transistor (FET), and positive electrode materials for rechargeable batteries, because 

the TTF moiety has strong electron-donating properties attributed to the formation of 

stable aromatic 1,3-dithiol-2-ylidenes (1,3-dithiole rings) by one- and two-electron 

oxidation [1-16]. Considerable efforts have been devoted to the development of 

peripherally benzene- or thiophene-substituted TTFs. As for peripherally benzene-

functionalized TTFs, some synthetic approaches, crystal and electron structures, 

electrochemical and optical properties, and the nature of ion-radical complexes with 

DDQ or iodine were reported [17-24]. Peripherally thiophene-functionalized TTFs as 

potential precursors to conducting polymers and organic metals were also prepared 

and characterized [25-29]. To design more tempting molecules, 1,3-dithiole rings on 

aromatic rings appears very appealing since they allow to produce novel multistage 

redox systems. However, such molecules could not be synthesized by conventional 

approaches. In 2011, a breakthrough synthesis of arylated TTF derivatives by using 

palladium-catalyzed direct C-H arylation was reported and their structural and 

electrochemical properties were clarified [30]. This motivated us to synthesize the 

novel multistage redox TTFs bearing 1,3-dithiole rings on aromatic rings 1–3 (Chart 1). 
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In addition, we have focused on cross-conjugated systems with 1,3-dithiole rings, 

which are of interest as novel multistage redox systems as well as donor component 

for organic conductors [1,31-41]. The palladium-catalyzed C-H arylation might offer 

new cross-conjugated molecules bearing conjugated moieties at the peripheral part of 

TTF, such as 4 (Chart 1), and its electrochemical property should be brought to light. 

Herein, we report the synthesis and electrochemical properties of 1–4.  

 

Chart 1: Target compounds. 

Results and Discussion  

We tried to synthesize compounds 1 and 2 in one step from pristine TTF and 5, 

respectively, through the palladium-catalyzed C-H arylation (Table 1). Aryl bromides 

6a,b were allowed to react with TTF under the condition A, the products 1a,b were 
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obtained in low yields as a mixture of hardly separable mono-, di-, tri-, and tetraarylated 

TTFs under the conditions both A and B (entries 3 and 4). The palladium-catalyzed C-

H arylation of 5 with 6a,b also proceeded to give 2a,b in 75 and 86% yields, 

respectively (entries 5 and 6). On the other hand, it was difficult to produce 3 in the 

same manner because 2-bromothiophenes 7 bearing a 1,3-dithiole ring at the 5-

position were unstable, for example, 7c was decomposed at around 67 oC (Scheme 

1a). Therefore, we could achieve the synthesis of 3a by the Pd-catalyzed thienylation 

of TTF using acetal-protected 8 and the following deprotection using PTSA•H2O and 

the P(OEt)3-mediated cross coupling with 11 (Scheme 1b). Cross-conjugated molecule 

4 was prepared in two procedures, one is the palladium-catalyzed C-H arylation of TTF 

with bromide 12 (Scheme 2a) and the other is the Vilsmeier-Haack reaction of 1a and 

the following triethyl phosphite-mediated cross coupling with 11 (Scheme 2b).  

 

Table 1: Synthesis of compounds 1 and 2. 

  

entry TTF or 5 6 (equivalent) condition yields of 1 or 2 (%) 

1 TTF 6a (5) A 1a; 46 

2 TTF 6b (5) A 1b; 48 

3 TTF 6c (5) A or B 1c; 0 (mixture) 

4 TTF 6d (5) A or B 1d; 0 (mixture) 

5 5 6a (2.5) Aa) 2a; 75 

S

S

S

S Br
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S
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R2

Pd(OAc)2

PtBu3•HBF4

Cs2CO3

1,4-dioxane
reflux, time

6

1  or 2

R1

R1

TTF; R1  = H

5; 2R1 = (CH=CH)2

condition A; 30 mol% Pd(OAc)2, 90 mol% PtBu3•HBF4 6 equiv Cs2CO3, 36 h

B; 60 mol% Pd(OAc)2, 180 mol% PtBu3•HBF4 12 equiv Cs2CO3, 108 h
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6 5 6b (2.5) Aa) 2b; 86 

a 24 h. 

 

Scheme 1: Synthesis of compound 3. 
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Scheme 2: Synthesis of compound 4. 

 

The molecular orbital calculation of 1a, 3a and 4 has been carried out by using 

B3LYP/6-31G(d) method [42]. Figure 1 shows an optimized geometry of 1a, and 1,3-

dithiole rings are labeled with AE and A’E’. This molecule adopts a nonplanar 

structure. The angles between two 1,3-dithiole rings in the center (AA’) is 155.5º. The 

dihedral angles between A and B, A and B’, A’ and C, and A’ and C’ were 137.9º, 48.5º, 

48.6º, and 136.6º, respectively. The HOMO, HOMO1, and LUMO of 1a are shown in 

Figure 2. The HOMO of 1a is mainly located on the TTF moiety, whereas the HOMO1 

is located on the benzene and outer 1,3-dithiole rings at the peripheral part of TTF. The 

LUMO of 1a spreads over the whole molecule except the outer 1,3-dithiole rings. The 

orbital energy of HOMO of 1a (4.33 eV) is higher than that of TTF (6.38 eV). If the 

oxidation relates to the orbital energy, the first oxidation of 1a might occur at lower 

potential than TTF [43]. 
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(c)  

 

Figure 1: An optimized structure of 1a; (a) top view, (b) side view, and (c) labeling of 

the 1,3-dithiole rings. 
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Figure 2: Molecular orbitals of 1a.  

 

 

The redox behaviors of 1–4 were investigated by cyclic voltammetry. Compounds 1a 

and 1b exhibited four and three pairs of redox waves, respectively (around +0.03 V, 

+0.10, +0.17, and +0.42 V vs. Fc/Fc+ for 1a; 0.05, +0.10, and +0.46 V vs. Fc/Fc+ for 

1b) (Figure 3). The redox potentials of 1a,b are summarized in Table 2 together with 

the related compound TTF. The redox waves observed at +0.42 V for 1a and +0.46 V 

for 1b are almost derived from the second redox of the TTF moiety, because they are 

close to the E2 of TTF (+0.37 V). The remaining redox processes observed at around 

+0.03, +0.10, and +0.17 V for 1a, and 0.05 and +0.10 V for 1b might be derived from 
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the first redox of the TTF moiety and the redox of the four outer 1,3-dithiole rings. To 

extract the exact oxidation potentials and number of electrons involved in each 

oxidation step, a digital simulation technique was applied [44]. As the result, the 

observed redox waves of 1a were well reproduced by the simulated waves (Table 2). 

It was indicated that the redox wave at +0.10 V was observed as overlap of sequential 

two stages of one- and two-electron transfer waves at +0.07 and +0.12 V, while the 

other waves correspond to one-electron transfer processes. The simulation results of 

1a also showed that the redox wave simulated at +0.02 V might be derived from the 

TTF moiety because of the close E values of them (E = +0.40 V for 1a; +0.46 V for 

TTF). The same discussion could be applicable for 1b. In addition, the potentials in 

which the outer 1,3-dithiole rings of 1a,b participate are influenced by their 

substituents, that is, 1b bearing electron-donating methyl groups has more negative 

redox potentials than 1a. As a consequence, the one-electron redox process of the 

TTF moiety and multi-electron redox processes of the outer 1,3-dithiole rings might 

overlap in 1b. Compound 4 exhibited three pairs of redox waves (around 0.09, +0.09, 

and +0.53 V vs. Fc/Fc+). The redox potentials of 4 and the simulation results are also 

summarized in Table 2 together with their related compounds TTF and 14. The redox 

process observed at +0.53 V is almost derived from the second redox of the TTF 

moiety, because it is the closest in the value to the E2 of TTF (+0.37 V) out of all of the 

potentials of the related compounds, TTF and 14. The remaining redox processes 

observed at around 0.09 and +0.09 V might be derived from the first redox of the TTF 

moiety, and the overall redox of 14-like sites, respectively. The observed potentials of 

4 were generally consistent with the simulated ones. The results of a digital simulation 

also showed that the redox wave observed at around 0.09 V and +0.09 V correspond 

to three stages of one-electron transfer and six stages of one-electron transfer 
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processes, respectively. In addition to overlap of the first redox of TTF and the redox 

of 14-like sites, each redox potential of the succeeding eight-electron oxidations of four 

14-like sites might slightly shift due to the non-equivalence of four 14-like sites. Also, 

the small E value (E = 0.16 V) of 14 makes the redox wave overlap. For these 

reasons, the first and second redox waves of 4 are broad, compared to those of 1a 

and 1b. The redox waves of 1a,b and 4 derived from the second redox of the TTF 

moiety (+0.42 V for 1a; +0.46 V for 1b; +0.53 V for 4) shifted to higher potentials than 

the second redox of TTF because of the instability of the hexacationic state of 1a,b 

and decacationic state of 4 compared to the dicationic states of TTF caused by on-site 

Coulomb repulsion between positive charges in the central TTF moiety and the outer 

1,3-dithiole rings. In addition, the observed peak currents of 1a and 4 in high potential 

region at +0.4 +0.5 V were smaller than those of the simulated waves. This 

phenomenon might be understood by considering that electron transfer of this redox 

reaction is slow enough to become a rate-determining step because of the crowded 

structure which the TTF core participating in this redox process is surrounded by 

extended aromatic rings bearing 1,3-dithiol rings. More details of the redox 

mechanisms of 1–4 are under investigation. 
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Figure 3: Cyclic voltammograms of 1a,b and 4 in PhCN/CS2 (1/1, V/V) solution. 
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Table 2: Redox potentials of 1, 4, and related compoundsa. 

 

 aIn PhCN/CS2 (1/1, V/V) containing 0.1 M nBu4NPF6. bAnodic peak. cIn PhCN containing 0.1 M nBu4NPF6. All potentials measured against 

Ag/Ag+ reference electrode and converted to vs. Fc/Fc+.  

 

Chart 2: Related compound 14. 

 

Supporting Information 

Supporting Information File 1: 

File Name: DT-Aryl-TTF_SI 

File Format: PDF 

 

 

Compound 

observed 

or 

simulated 

value 

E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 

1a 
observed 

around 

+0.03b 
+0.10 +0.17 +0.42     
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