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Abstract 

The 14-3-3 protein family, one of the first discovered phosphoserine/phosphothreonine binding 

proteins, has attracted interest not only because of its important role in the cell regulatory processes 

but also due to its enormous number of interactions with other proteins. Here, we use a 

computational approach to find the binding sites of the designed hybrid compound featuring 

aggregation-induced emission luminophores as a potential supramolecular ligand for 14-3-3 in 

the presence and absence of C-Raf peptides. Our results suggest that the area above and below the 

central pore of the dimeric 14-3-3 protein is the most probable binding site for the ligand. 

Moreover, we predict that the position of the ligand is sensitive to the presence of phosphorylated 

C-Raf peptides.  
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1. Introduction 

The 14-3-3 protein family was one of the first discovered phosphoserine/phosphothreonine binding 

proteins. In total seven isoforms of the 14-3-3 family are known to date (, , , , , , and ) in 

mammals [1]. They are forming homo and heterodimers with a profile shaped like the Greek letter 

“” [2]. 14-3-3 proteins have attracted interest due to their enormous number of interactions with 

other proteins. Currently, more than 200 interacting proteins are known. 14-3-3 proteins play a 

significant role in cell signaling [2,3] and they were found to be essential in processes such as 

differentiation, apoptosis, or migration [4]. 14-3-3 proteins play also a role in several human 

diseases including cancer and neurodegenerative disorders like Alzheimer’s and Parkinson’s 
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diseases [5]. Based on these observations and findings it is not surprising, that the 14-3-3 family 

has attracted interest in pharmacological research as a novel potential target [5,6]. 

One option to modulate, inhibit, or stabilize protein-protein interactions (PPI) is the use of specific 

supramolecular ligands [7,8]. One well-known example of efficient protein binders is the so-called 

guanidiniocarbonyl-pyrrole (GCP) discovered 20 years ago by Schmuck et al.. These compounds 

are known to efficiently bind to oxo-anions such as carboxylates [9]. These compounds were 

already used to specifically address carboxylates on the surface of proteins. Many artificial 

receptors based on guanidinium scaffolds use hydrogen bonding, charge pairing, and hydrophobic 

interactions to complex oxoanions [10]. The guanidiniocarbonyl-pyrrole (GCP) is able to bind 

oxoanions even in aqueous solvents with competing ions and salts. Schmuck et al. also discovered 

that an additional positive charge increases the binding affinity to oxo-anions [9]. These unique 

properties make the GCP oxo-anion binder an ideal candidate to be used for protein recognition. 

In a previous study, it was possible to use GCP containing polycationic ligands for 14-3-3 proteins 

with a significant effect on PPIs [11,12]. Furthermore, a simple GCP derivative, namely GCP-Lys-

OMe, was identified as the first binder for the specific binding area of the 14-3-3 homodimer [13]. 

Very recently the survivine-histone H3 interaction was disrupted using a GCP dimer, which led to 

decreased cancer cell proliferation [8]. 

A major problem in this context is the readout of binding events, which is currently mainly 

achieved by indirect measurements. One approach to overcome this issue is to use fluorescence 

emission as a read-out tool, such as an emission “on” or “off” behavior [14]. Selective and sensitive 

fluorescent ligands have been proven to be essential tools for the study of biological systems by 

biosensing and imaging [15]. There is an increasing demand for novel luminophores tailor-made 

for different applications. One unique, promising class of compounds, the so-called aggregation-
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induced emitters (AIE) have been used for a wide range of applications, like in OLEDs, liquid 

crystals, stimuli responses, bioassays, protein and ion detection or imaging [14,16]. In contrast to 

classical luminophores, these compounds typically show emission “on” behavior upon aggregation 

or binding which can be explained by a restriction of motion. In this contribution, we designed a 

hybrid compound featuring AIE luminophores based on aromatic-thioethers [17] as a potential 

supramolecular ligand for 14-3-3. 

We synthesized a GCP-Lys dimer coupled via Cu(I) catalyzed click reaction to the chosen emitter 

equipped with two azide functions (see Figure 1 and Supporting Information File 1). This 

compound (1) was tested in initial binding assays using fluorescence emission as well as native gel 

electrophoresis. We could indeed show that (1) binds to 14-3-3 as detected by native gel 

electrophoresis and fluorescence titration (see Supporting Information File 1). Initial experiments 

show that probably two molecules of (1) can bind simultaneously to one 14-3-3 homodimer (see 

Supporting Information File 1). However, it is completely unknown where (1) binds on 14-3-3’s 

surface. In its profile, 14-3-3 has roughly the shape of the Greek letter, where the two wells can 

clamp together pairs of proteins (Figure 2b). Knowledge of the binding site is of critical importance 

for a potential bioanalytics application: if (1) would block one or both wells of the , it could 

prevent binding of ligand proteins, whereas a (1) binding site in the outer parts of the  would not 

interfere with functional protein-protein binding.  
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Figure 1: AIE-active molecule (1). (a) Structure of (1) with color-coded subunits AIE, lysine, and 

GCP. (b) Coarse-grained bead-spring model of (1). 

 

 

Figure 2: 14-3-3 from (a) top and (b) side with the two monomers in red and blue. In the top view 

the central pore is clearly visible. The side view shows the  shape with the two binding grooves 

for protein ligands, e.g., the C-Raf peptides (yellow). The structure is based on PDB entry 4IHL 

[18]. 

 

To identify the putative binding site of compound (1) on 14-3-3, and possibly to guide further 

experiments, we have developed and applied a computational model of the molecular system 

consisting of 14-3-3, (1), and the implicit solvent. Since this system is large and has many degrees 

of freedom, we did not use the expensive standard methods, such as molecular dynamics simulation 

with an all-atom force field. Instead, we devised a new method that allowed a complete screening 
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of the system at a meaningful level of accuracy and that identified putative binding sites of (1) on 

14-3-3 that can now be tested in a targeted way. We tried to answer basically two questions: (a) 

where does compound (1) bind on 14-3-3, and (b) how would the presence of phosphorylated C-

Raf peptides in the binding grooves of 14-3-3 affect the binding of (1)? 

2. Results and Discussion 

We explored potential binding positions by exhaustive simulations of (1) around 14-3-3 with and 

without C-Raf peptides as described in section Experimental. The distribution of the final total 

energies are shown in Figure 3. Although the bulk of the energies follows a similar distribution in 

both simulation series, there is a remarkable difference, namely that in the simulations with C-Raf 

the log-scaled histogram has a tail to much lower energies. This difference must be due to 

interactions of (1) with C-Raf because otherwise the molecular systems are unchanged.  
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Figure 3: Log scaled histogram of total energies at the final steps of all simulations. (a) Simulated 

annealing (SA) runs with (1) around 14-3-3 protein, (b) (1) around 14-3-3/C-Raf complex. 



 

8 

2.1 Predicted binding sites of (1) on 14-3-3

The total energies at the final positions of simulated annealing (SA) runs (Figure 4) show that (1) 

could bind in most regions on the surface of 14-3-3, especially in the absence of C-Raf (top row 

in Figure 4). Some areas seem to be favored: firstly, the tips of the omega ears, though this should 

be taken with caution as the model is lacking the very flexible C-termini that are in these regions; 

secondly, below the pore at the bottom of the omega in the case without C-Raf; thirdly, above the 

pore between the two binding grooves of the omega in the presence of C-Raf. Overall the clustering 

and the pattern of energies reflect the C2 symmetry of the 14-3-3 dimer.  
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Figure 4: Sampled positions of the AIE moiety (a-f) colored according to the total energy of (1) 

from dark red (lowest energy) to white (highest energy). The values in the color bar are in units of 

kJ/mol. Top row: in absence of C-Raf; middle row: in presence of C-Raf; bottom row: structure of 

14-3-3 in corresponding orientations (same orientation in each column) with the top view in the 

left column, bottom view in the central column, side view in the right column. Little spheres in the 

bottom row are cluster medoids.  

  

2.2 Minimum energy conformations 

Closer inspection of energies reveals that in the absence of C-Raf peptides, the minimum energy 

conformation of (1) lies below the , under the central pore of 14-3-3 (Figure 5a and b). With this 

conformation, one of the GCP groups falls into the minimum energy position on the affinity grid. 
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There is another minimum at the C2-symmetry related position of the mentioned GCP bead as well. 

Therefore, the second minimum energy conformation of the ligand (represented with larger beads 

in Figure 5) has one of its GCP groups in the C2-symmetry related position of the GCP bead in the 

first minimum energy conformation. The same happens to the Lys groups. As Figure 5 shows, the 

GCP and lysine beads are found near the hydroxyl groups of the aspartic acid residues of the 

protein.  

In contrast, in the presence of C-Raf peptides the minimum energy positions of (1) move to the 

center of the  where the AIE moieties hover above the central pore (Figure 5c and d). In these 

two conformations, at least one of the lysine groups falls into the minimum energy position of the 

lysine affinity map (more information about the affinity map is given in section 4.1). Both GCP 

groups fall into the two minimum energy positions of the GCP affinity map as well. In both 

minimum energy conformations of the ligand, at least one GCP or Lys group is found near one of 

the phosphorylated serine (pSer) residues of the C-Raf peptides (Figure 5d). This is to be expected 

due to the strong negative charge of pSer.  
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Figure 5: Minimum energy conformations of AIE ligand in the absence (a,b) and presence (c,d) 

of C-Raf peptides. The first and second minimum energy conformations are represented by small 

and large beads, respectively. In the absence of the C-Raf peptides, Lys (dark blue beads) and GCP 

(green beads) groups are found near the aspartic and glutamic residues of 14-3-3. In the presence 

of the peptides, at least one Lys or GCP group is found near the phosphorylated serine group 

(magnified image in (d)) of the C-Raf peptides. In this figure, all the distances are in Ångströms.  

 

2.2.1 Binding experiments 

A qualitative proof of binding of (1) and 14-3-3 could be achieved with native gel electrophoresis. 

It could be shown that (1) hinders some of the 14-3-3 from entering the gel and that the mobility 

of 14-3-3 correlates with the amount of (1) added. In fact, using default atomic charges [19, 20], 



 

12 

the 14-3-3 dimer has a net charge of -32 |e| (proton charges), and the binding of two (1) leads to 

a net charge of -24 |e| of the complex.  

It is known that aggregation-induced emission is caused by the blocking of non-radiative decay 

pathways. Moreover, fluorescence is quenched if two fluorophores come into close proximity 

including --contacts, known as aggregation-caused quenching (ACQ) [21]. Contrary to our 

expectations we observed a decrease in emission upon titration of (1) to 14-3-3, in initial 

experiments, which motivated this contribution. Furthermore, we discovered that probably two 

ligands (1) simultaneously bind to one 14-3-3 dimer (see Supporting Information File 1).  

Our simulations predict that in the C-Raf-free complex of 14-3-3 with (1) two AIE moieties in 

the minimum energy conformations of the ligand could be very close to each other (at a distance 

of 5.25 Å) (Figure 5a and b). If two molecules of (1) occupy these two positions at the same time, 

their fluorescence might be quenched. Yet, our model is too coarse to answer this question. Our 

simulations contain only a single moiety of (1) so interactions with another one are omitted. 

Moreover, our electrostatic model could not account for - contacts. 

A more detailed experimental validation will be the focus of an experimental study in the near 

future. Three variants of (1) will be synthesized to gain a deeper insight into the binding 

stoichiometry and affinity, as well as the structure-property relationship on the influence on protein 

functions. 

3. Conclusion 

On the basis of the final energy values of 4000 of runs with a simulated annealing approach, we 

find the area above and below the central pore of 14-3-3 protein to be the most probable binding 

site for (1). The position of the ligand is sensitive to the presence of phosphorylated C-Raf peptides 
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as interaction with these phosphorylated peptides draws (1) with its positive GCP and Lys groups 

into the region between the two binding grooves of 14-3-3 with a much higher affinity. If presence 

of another ligand (like C-Raf) leads to rearrangement of binding of AIE-molecules around a target 

protein (like 14-3-3), and thus to differences in fluorescence, we have a mechanism that can 

possibly be exploited in analytical applications. 

4. Experimental 

4.1 Energy Grids 

To compute a map of affinities of 14-3-3 with GCP and lysine ligands, we proceeded as follows. 

The GCP and lysine ligand geometries were calculated in OpenBabel v2.3.2 [22] starting from a 

SMILES string of each ligand. Van der Waals radii of ligand atoms were added automatically by 

OpenBabel. The 14-3-3 structure (PDB 4IHL, [18]) was refined with MODELLER [23] as 

described in reference [24]. Charges, van der Waals radii and missing hydrogen atoms were added 

by PDB2PQR v2.0.0 [19, 20] at pH 6.5 with the Amber force field option (values are provided in 

Table S3 in the Supporting Information File 2 and Table S4 in the Supporting Information File 3). 

The 14-3-3 electrostatic field was calculated by solving the non-linear Poisson-Boltzmann 

equation with APBS version 1.5 [25] with ionic concentrations of 0.1 mol/L NaCl and 0.01 mol/L 

MgCl2 and relative dielectric permittivities r
protein = 2 and r

water = 79. The 14-3-3 environment 

was scanned with the GCP and lysine ligands separately in Epitopsy [22] using 150 rotations and 

a grid resolution of 0.4 Å. We have also tried a grid resolution of 0.8 Å which would have allowed 

more efficient calculations. However, the 0.8 Å resolution was not fine enough to accurately 

capture essential properties of the system, especially the C2 symmetry of 14-3-3. Affinity grids 
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for lysine and GCP have been obtained once using the structure of 4IHL (complex C-Raf/14-3-3) 

and once using only the structure of 14-3-3 (4IHL without C-Raf peptides). These affinity grids 

are the only difference between the two series of simulations (in the presence and absence of C-

Raf peptides). Note that the above approach models only interactions of individual GCP or lysine 

groups with 14-3-3. To model the interactions of 14-3-3 with the full multivalent (1) ligand, we 

have combined these and further interactions in a single model as described in the following. 

4.2 Coarse-Grained Model 

We developed a coarse-grained model of (1) known as the Bead-Spring model in the context of 

polymer studies [26-28]. Our model is a chain of five beads, GCP-Lys-AIE-Lys-GCP, with each 

pair of neighbors in the chain connected by a harmonic spring potential (Figure 1b). Given the 

symmetry of (1), there are two types of springs, GCP-Lys and Lys-AIE. The spring parameters are 

chosen such that the five beads are always within a reasonable distance from each other, i.e. close 

to the distances in an atomistic model of the ligand structure. This atomistic model of the ligand 

was created in ChemDraw prime 16.0 (PerkinElmer, Waltham, MA, USA). The structure was then 

imported in Maestro (Schrödinger Maestro Version 11.5.011, MM share Version 4.1.011, Release 

2018-1, Platform Windows-x64) and finally, the energy of the structure was minimized.  

Overlaps between non-bonded beads are avoided by repelling potentials. Equation 1 represents 

this in the form of hard sphere potential.  

𝐸𝑟𝑒𝑝𝑒𝑙𝑙𝑖𝑛𝑔 = {
∞     𝑑 < 𝑎

0      𝑑 ≥ 𝑎
  (1) 

where d is the distance between the centers of two non-bonded beads and a is the average of 

pairwise addition of the radii of all the non-bonded beads (i.e. Lys-Lys, GCP-GCP, GCP-Lys, and 

GCP-AIE). According to the length scales in our atomistic model of the ligand, the value of 9.6 Å 
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is predicted for a. To prevent possible overlaps between the ligand and the protein, atoms of the 

ligand are not allowed to enter the van der Waals radii of protein atoms. This model interacts with 

14-3-3 through the energy grids of lysine and GCP as mentioned above. Equation 2 describes 

different terms of the total energy.  

𝐸𝑡𝑜𝑡𝑎𝑙 =
1

2
∑ 𝑘𝑖(𝑙𝑖 − 𝑙𝑖

𝑒𝑞)2 + 𝐸𝑔
𝐺𝐶𝑃1 + 𝐸𝑔

𝐿𝑦𝑠1 + 𝐸𝑔
𝐺𝐶𝑃2 + 𝐸𝑔

𝐿𝑦𝑠24
𝑖=1   (2) 

where ki is the spring constant, li is the distance between bonded beads i and i+1, and li
eq is the 

corresponding distance at equilibrium, Eg represents the affinity of protein toward GCP or lysine 

at a specific grid point. In this study, l1 and l4, i.e. the equilibrium lengths for the springs connecting 

GCP to lysine, have been selected to be 6 Å and l2 and l3, i.e. the equilibrium lengths for the springs 

connecting lysine to AIE, have been selected to be 13 Å. The value of the spring constants in bead-

spring models with Gaussian probability distribution is inversely proportional to the square of the 

equilibrium length of the spring [29]. Based on that, the values of k1 and k4 (spring constants for 

GCP-Lys bonds) were chosen to be 12 kBT/Å2 while the values of k2 and k3 (spring constants for 

Lys-AIE bonds) were chosen to be 3 kBT/Å2. With these parameters, the sum of harmonic 

potentials in the relaxed structure of the ligand will be comparable to the sum of GCP and lysine 

affinities (see Equation 2 for total potential). Otherwise, the minimized total energy might be 

misleading (the harmonic term might be minimized while the term related to the grid affinities 

might not be minimized). What matters is to find the minimum energy conformation of the ligand 

with regard to the affinity maps of lysine and GCP. 



 

16 

4.3 Simulated Annealing Schedule 

To identify the energy minima of the coarse-grained ligand model around 14-3-3, we used 

simulated annealing. This computational method is typically applied to identify the global optimum 

of an objective function, even if there are many local optima [30-32]. 

At the heart of our implementation of the SA method we carried out Markov Chain Monte 

Carlo (MCMC) simulations of (1) around 14-3-3 with the acceptance criterion of Metropolis et 

al. [33], as detailed below. We did many MCMC simulations at temperatures given by the 

following schedule. We started the simulations at a very high temperature (3000 K) and slowly 

cooled the system down to low enough temperatures at which an acceptance ratio of less than 1% 

was achieved. At each temperature level, we ran an MCMC simulation with the Metropolis 

criterion. The Monte Carlo trajectory ended at each temperature level after 10000 moves, or after 

1000 accepted moves, whichever was reached sooner. With this protocol good convergence to 

minimum energies was achieved (see Figure S2 in the Supplementary Information). 

We did 4000 SA runs to identify the globally optimal configuration of (1) around 14-3-3. At 

the beginning of each simulation, we put the AIE bead at a random grid position within a volume 

layer around the protein (we used the same grid geometry as in the energy grids described above). 

The thickness of the layer corresponded to the distance between AIE and GCP. Its volume is about 

500 nm3, so that the 4000 AIE positions sample the layer at a density of about 8 per nm3 (Figure 

4a-f). After its random placement, the position of AIE bead was kept fixed throughout the 

respective simulation. In each MCMC step, just one of the lysine or GCP beads was randomly 

selected and moved by a maximum of 6 grid lengths along each of the three Cartesian coordinate 

axes. If in the new position the bead fell within the specified distance of any of the non-bonded 

beads, the move was rejected due to the repelling potential. Otherwise, the energy with the new 
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ligand position was evaluated and compared to the old energy in the Metropolis criterion to accept 

or reject the move. Our code was written in the Julia language and ran with Julia version 1.5.2 [34].   

4.4 Clustering 

Applying a clustering method to the final positions of (1) provides a sanity check for our 

simulations. Considering the fact that 14-3-3 is a homodimer with C2 symmetry, we expect for 

each binding site (or cluster of binding sites) that does not lie on the symmetry axis a symmetry 

related binding site (or cluster).  

We used a robust silhouette-validated PAM (partitioning around medoids) clustering for this 

purpose [35]. Optimal number of clusters was extracted and visualized (in Supporting Information 

File 1) using the fviz_nbclust tool from R package factoextra version 1.0.7, and clustering was done 

using the pam tool from R package cluster version 2.1.0, in R version 3.5.3 [36]. 

 

Supporting Information 

Supporting Information File 1: 

 File name: “SI.docx” 

 File format: Microsoft Word  

 Title: General information and instrumentation, cluster analysis, electrostatic potential 

surface of 14-3-3, total energy of a simulation. 

Supporting Information File 2: 

 File name: “Table-S3.xlsx” 

 File format: Microsoft Excel 
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 Title: PDB2PQR output for lysine 

 

Supporting Information File 3: 

 File name: “Table-S4.xlsx” 

 File format: Microsoft Excel 

 Title: PDB2PQR output for GCP 
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