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Abstract
15

The hardware implementation of signal microprocessors based on superconducting technologies16

seems relevant for a number of niche tasks where performance and energy efficiency are critically17

important. In this paper, we consider the basic elements for superconducting neural networks18

on radial basis functions (RBF). We examine the static and dynamic activation functions of the19

proposed neuron. Special attention is paid to tuning of the activation functions to the Gaussian form20

with relatively large amplitude. We proposed and investigated heterostructures designed for the21

implementation of tunable inductors which consist of superconducting, ferromagnetic, and normal22

layers.
23

24
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Introduction28

For modern telecommunications, probabilistic identification of various sources in a broadband group29

signal is extremely important. Also, the probabilistic analysis is used in the consideration of stochastic30

processes [1-4], as a popular machine learning method for spatial interpolation of non-stationary and31

non-Gaussian data [5], as a central part of compensation block to enhance the tracking performance32

in control systems for a class of nonlinear and non-Gaussian stochastic dynamic processes [6].33

An important example for this work is the cognitive radio, which is able to receive information34

about the features of the "radio-environment" and adjust its operating parameters based on this data [7-35

13]. Similar problems arise nowadayswhen reading data in superconducting noisy intermediate-scale36

quantum (NISQ) computers [14-17]. Here again, we need real-time identification and classification37

of varying signals from multiple sources (qubits) in a narrow frequency range. When working with38

large data, it’s necessary to create specialized neural networks at the hardware level to effectively39

solve such problems.40

Josephson digital circuits and analog receivers have been used for a long time to create software-41

defined radio-systems [18-25] as well as read-out circuits for quantum computing [26-33]. They42

realize a unique combination of a wide dynamic range and high sensitivity when receiving signals,43

with high-performance and energy efficiency at the stage of the processing. It seems reasonable to44

implement additional processing of incoming data inside the cryo-system using the capabilities of45

neural network computing [34-43]. The creation of extremely low-dissipating element base for such46

systems is a very actual scientific and technical task that requires theoretical and experimental studies47

of the features of macroscopic quantum interference in the complex Josephson circuits.48

The direct use of the previously proposed superconducting adiabatic neural network (ANN) based49

on the perceptron [44-48] for probabilistic identification is not possible. In particular, during the50

2



formation of the output signal in the ANN, the so-called global approximation of the input signal51

is implemented [11,12], in which almost all neurons are included in signal processing. In addition,52

the perceptron is a fully connected network, which means an abundance of synaptic connections53

between neurons. These circumstances supposes a highly resource-intensive learning of the network54

for signal analysis. There is an alternative approach with a representation of the input set of data55

into the set of output values by using only one hidden layer of neurons. Each of these neurons is56

responsible for its own area of the parameter space of incoming data. This is the probabilistic or57

Bayesian approach, where radial-basis functions (for example, Gaussian-like functions) are used as58

neuron activation functions.59

Themost common networks operating on this principle are radial basis function networks (RBFN)60

(also known as Bayesian networks). When using such a network, objects are classified on the basis61

of assessments of their proximity to neighboring samples. For each sample, a decision can be made62

based on the selection of the most likely class from those to which the sample could belong. Such a63

solution requires an estimate of the probability density function for each class. This score is obtained64

by consideration of training data. The formal rule is that the class with the tightest distribution in the65

scope of the unknown instance will take precedence over other classes. The traditional approach for66

estimating the probability density for each class is to assume that the density has some definite form.67

The normal distribution is the most preferred since it allows one to estimate such parameters of the68

model as the mean and standard deviation analytically. The superconducting implementation of the69

key elements of the discussed neural networks is the focus of this work.70

Results and Discussion71

Model of tunable Gauss-neuron: numerical simulations72

A usual architecture of the considered RBFN [49] is presented in figure 1a. These networks have73

only one hidden layer of neurons on which components of the input vector 𝑥 are fed. Every neuron74

of the hidden layer calculates the values of the 1D function ℎ𝑘 (𝑥).75
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ℎ𝑘 (®𝑥) = 𝑒𝑥𝑝
{
− (‖𝑥 − 𝑥𝑘 ‖)2

2𝜎2
𝑘

}
, (1)76

where 𝑥𝑘 is a 𝑘 𝑡ℎ reference point, 𝜎𝑘 – scattering parameter for one-dimensional function ℎ𝑘 (®𝑥).77

In this paper, we propose a modified tunable neuron circuit [44] for RBFN (see figure 1b), with a78

Gaussian-like activation function. It consists of two identical Josephson junctions 𝐽𝐽1 and 𝐽𝐽2 in the79

shoulders with input inductances, 𝐿, and output inductunce 𝐿𝑜𝑢𝑡 . It is also used to set an additional80

bias magnetic flux,𝛷𝑏. Flux biasing is used to provide a suitable transfer function for asynchronous81

circulation of currents in the connected circuits. We will further call such a cell a Gauss-neuron or a82

G-cell/neuron.83

Figure 1: (a) Schematic illustration of a RBF-network. (b) Schematic representation of a Gauss-
neuron ensured Gauss-like transfer function.

Hereinafter we use normalized values for typical parameters of the circuit: all fluxes (input84

Φ𝑖𝑛 and output Φ𝑜𝑢𝑡 , bias Φ𝑏) are normalized to the flux quantum Φ0; currents are normalized to85

the critical current of the Josephson junctions 𝐼𝐶 ; inductances are normalized to the characteristic86

inductance 2𝜋𝐿𝐼𝐶/Φ0, times are normalised to the characteristic time 𝑡𝐶 = Φ0/(2𝜋𝑉𝐶) (𝑉𝐶 is a87

characteristic voltage of a Josephson junction). Equations of motion were obtained in terms of88

half-sum and half-difference of Josephson phases 𝜑1, 𝜑2 (𝜃 = (𝜑1 + 𝜑2)/2 and 𝜓 = (𝜑1 − 𝜑2)/2):89
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¤𝜃 = 𝜑𝑏 − 𝜃
𝑙 + 2𝑙𝑜𝑢𝑡

− sin 𝜃 cos𝜓, (2)90

¤𝜓 = −𝜑𝑖𝑛 + 𝜓
𝑙

− sin𝜓 cos 𝜃. (3)91
92

The output magnetic flux obeys the following equation:93

𝜑𝑜𝑢𝑡 =
2𝑙𝑜𝑢𝑡

𝑙 + 2𝑙𝑜𝑢𝑡
· (𝜃 − 𝜑𝑏) . (4)94

Figure 2(a,b) below shows the families of transfer functions of a Gauss-neuron at different bias95

fluxes. They are compared with the radial-basis function taken in the form 𝑔(𝑥) = 𝑒𝑥𝑝(−𝑥2/(2𝜎2))96

(dashed line). All transfer functions were normalized to normalized to their maximum value, since97

at the first stage we were interested in the shape of the curve itself. It can be seen that the shape98

of the response meets the requirements; in addition, it can be adjusted using a bias magnetic flux99

𝜑𝑏. An important feature of the system is that it also allows non-volatile tuning with memory using100

tunable inductances 𝑙 and 𝑙𝑜𝑢𝑡 , see figure 2(c-e). Estimations for different values of 𝜑𝑏 show that the101

best match (with Gauss-like radial-basis function) can be achieved with 𝜑𝑏 = 0.05𝜋 and inductance102

values 𝑙 = 0.1, 𝑙𝑜𝑢𝑡 = 0.1. Also the investigation of the full width at half maximum (FWHM) and103

the amplitude of the transfer functions of the Gauss-neuron was carried out for different values of104

𝜑𝑏 (figure 2(c-d)) and inductance 𝑙 (figure 2(e)). It can be seen that an increase in the value of the105

inductance 𝑙 decreases FWHM of the transfer function and increases its amplitude. The bias flux is a106

convenient adjustment of transfer function of the tunable Gauss-neuron; bias flux should vary in the107

[0...0.5]𝜋 range to save the proper form of the transfer function. The mean of the transfer function108

can be controlled by an additional constant component in the input flux. By selecting the parameters109

of a configurable G-neuron, we can make the effective field period for the activation function large110

enough for practical use in the real neural networks (figure 2(e)).111

We calculated the standard deviation (SD) of the transfer function from the Gaussian-like function112

𝑔(𝑥) with fixed amplitude. The obtained results are presented in the {𝑙, 𝑙𝑜𝑢𝑡} plane. This visualization113
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(a) (b)

(c) (d) (e)

Figure 2: Transfer functions (normalised) and its main characteristics for the Gauss-neuron. (a),
(b) Families of the normalised transfer functions depending on the magnitude of the bias flux 𝜑𝑏
for various pairs of inductances 𝑙 and 𝑙𝑜𝑢𝑡 : (a) 𝑙 = 0.1, 𝑙𝑜𝑢𝑡 = 0.1; (b) 𝑙 = 0.9, 𝑙𝑜𝑢𝑡 = 0.1. (c)
Dependencies of full width at half maximum (FWHM) and amplitude on the bias flux 𝜑𝑏 of transfer
functions for 𝑙 = 0.1, 0.5, 0.9 with 𝑙𝑜𝑢𝑡 = 0.1. d) Dependencies of FWHM and amplitude on the
inductance 𝑙 for transfer functions of the Gauss-neuron at 𝑙𝑜𝑢𝑡 = 0.1 and 𝜑𝑏 = 0.05 · 𝜋.

allows to find the most proper operating parameters for the considered element. The magnitude of114

the amplitude of the transfer function was also presented (Figures 3(a,b)). The optimal values of115

inductance corresponding to the minimum of SD lies in the hollow of the surface, see figure 3(b).116

The minimum SD value is reached at 𝑙 = 0.1, 𝑙𝑜𝑢𝑡 = 0.1. The position of the hollow in figure 3(b)117

could be expressed as (𝑙𝑜𝑢𝑡)𝑆𝐷 ≈ 0.8 − 0.55 · (𝑙)𝑆𝐷 . At the same time, for relatively small 𝜑𝑏 the118

transfer function amplitude increases with increase of the output and shoulder inductunces, 𝑙𝑜𝑢𝑡 and119

𝑙. Thus, the choice between the proximity of the transfer function to a Gaussian-like form and the120

maximization of the response amplitude is determined by the specifics of the network when solving121

a specific problem. Once again, we emphasize: variations in the parameters of the circuit within122
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a fairly wide range allows one to change the amplitude and width of the activation function, while123

maintaining its Gaussian-like shape.124

a) b)

Figure 3: Amplitude of the transfer function (a) and its standard deviation from the Gaussian-like
function (b) depending on the inductances 𝑙 and 𝑙𝑜𝑢𝑡 of the G-cell. Bias flux is equal to 0.05𝜋.

The dynamic transfer functions of the system were also calculated (figure 4(a)). The input125

magnetic signal is a smoothed trapezoidal function of time with rise/fall time 𝑡𝑅𝐹 , see the insert in the126

figure 4(b). It can be seen that the dynamic activation function of the required type without hysteresis127

can be obtained with adiabatic operation of the cell (𝑡𝑅𝐹 up to 8000𝑡𝐶 , where 𝑡𝐶 is the characteristic128

time for the Josephson junction).129

Realization of tunability: adjustable kinetic inductance130

For neural networks based on the considered G-neurons, tunable linear elements (inductors) with131

memory properties are extremely important. This allows the in situ switching between operating132

modes directly on the chip. The tunable passive devices are usually based on thin superconducting133

strips, which demonstrate non-linear properties of kinetic inductance at a large current comparable134

to the critical one [50,51]. Perspective types of controllable devices consist on the hybrid structures135
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(a) (b)

Figure 4: (a) Dynamic transfer function of a Gauss-neuron for a trapezoidal external signal for dif-
ferent values of the rise / fall times of the signal 𝑡𝑅𝐹 and (b) Energy dissipation, normalised to the
characteristic energy 𝐸0 = Φ0𝐼𝐶/2𝜋, by rise-fall time of the input signal for different bias fluxes:
𝜑𝑏 = {0.01, 0.05, 0.1} · 𝜋. Insert demonstrates the form of temporal dynamic for input flux and dis-
sipation. If the critical current for Josephson junctions 𝐼𝐶 is equal to 100𝜇𝐴 and 𝜑𝑏 = 0.05𝜋 than
𝐸𝑑𝑖𝑠 ≈ 0.01 𝑎𝐽 for 𝑡𝑅𝐹 = 6 𝑛𝑠 (corresponds to ≈ 1700·𝑡𝐶).

with semiconductors tunable by gate-voltage [52] or include magnetic layers with different possible136

magnetic states [53] .137

A relatively simple way to create the required passive element with non-volatile memory is a138

tunable kinetic inductance [46] with integrated spin-valve structure. The typical spin-valve [54-56]139

is a hybrid structure containing at least a pair of ferromagnetic 𝐹𝑀-layers with different coercive140

forces. Variations in the relative orientation of their magnetizations change the distribution of the141

order parameter, that leads to a noticeable change in the kinetic inductance of the layers. The usage142

of a thin superconducting spacer (𝑠) between FM layers supports superconducting order parameter143

and increase efficiency of spin-valve effect [57]. In this article, we propose a development of this144

approach, allowing to significantly increase the effective variations in the kinetic inductance.145

We study proximity effect and electronic transport in the multi-layer hybrid structures in the frame146

of Usadel equations [58]147

𝜋𝑇𝐶𝜉
2

(
𝐺
𝑑2𝐹

𝑑𝑥2
− 𝐹

𝑑2𝐺 𝑝

𝑑𝑥2

)
− 𝜔𝐹 = −𝐺Δ, 𝐺2𝜔 + 𝐹𝜔𝐹∗

−𝜔 = 1; (5)148
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149

Δ ln
𝑇

𝑇𝐶
+ 𝜋𝑇

∞∑︁
𝜔=−∞

(
Δ

|𝜔| − 𝐹
)
= 0, (6)150

with Kupriyanov-Lukichev boundary conditions [59]151

𝛾𝐵𝜉𝑙

(
𝑑𝐹𝑙

𝑑𝑥
− 𝐹𝑙

𝐺 𝑙

𝑑𝐺 𝑙

𝑑𝑥

)
= 𝐹𝑟 − 𝐹𝑙

𝐺𝑟

𝐺 𝑙

(7)152

at the S/FM interfaces. Here 𝐺 and 𝐹 are normal and anomalous Green’s functions, 𝜔 = 𝜋𝑇 (2𝑛 + 1)153

is Matsubara frequency. 𝜔 = 𝜔 + 𝑖𝐻, where 𝐻 is the exchange energy (𝐻=0 in 𝑆 and 𝑁 layers), 𝑙/𝑟154

– indexes, which denotes the materials from the left and right side from interface, 𝜉 – the coherence155

length, 𝜌 – resistivity, 𝛾𝐵 =
𝑅𝐵𝐴
𝜌𝑙𝜉𝑙
– interface parameter, where 𝑅𝐵𝐴 – the resistance per square of the156

interface.157

The calculated distribution of the anomalous Green function, 𝐹, permits to estimate the ability to158

influence the propagation of the superconducting correlations (screening properties) for the hybrid159

structure. The spatial distribution of the screening length directly depends on the proximization of160

the superconducting order parameter in the system [60]:161

𝜆(𝑥)−2 = 16𝜋𝑇
2

𝜌

𝑅𝑒∑︁
𝜔>0

(
𝐹 (𝑥)2

)
. (8)162

Hence, the screening length and kinetic inductance of the considered 𝑠-layers are significantly larger163

for the parallel orientation of the magnetizations in 𝐹𝑀- layers (parallel case) in comparison with the164

anti-parallel case. It leads to redistribution of the current flowing along the multilayer and increase165

the total kinetic inductance of the structure [61,62]166

𝐿𝐾 =
𝜇0𝑋

𝑊


𝑑∫
0

𝜆(𝑥)−2𝑑𝑥

−1

(9)167

where 𝑋 is the length of the strip, 𝑊 – width, and 𝑑 is the thickness of the multilayer. It can168

be concluded that small changes in temperature or applied magnetic field [46,63] can significantly169
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change (from zero to relatively large values) the kinetic inductance of thin 𝑠-layers in the hybrid170

structures under consideration. In our calculations, we assume that the currents flowing through the171

system are weak and do not have the effect of coupling, and the structure itself is much thinner than172

the screening length of the magnetic flux.173

We propose a hybrid structure effectively consisting of three parts: a pairing source, a spin valve,174

and a low inductive current carrier. The pairing source is a superconductor layer slightly thicker than175

the critical value at which the self-consistency potential appears. This condition usually corresponds176

to thicknesses of the order of (2...3) 𝜉. The spin valve is a multilayer structure (𝐹𝑀)1− 𝑠− (𝐹𝑀)2−177

𝑠− (𝐹𝑀)1− 𝑠− (𝐹𝑀)2 with several ferromagnetic layers (𝐹𝑀)1 and (𝐹𝑀)2 of different thicknesses,178

separated by thin spacers of a superconductor or normal metal. Remagnetization of the structure by179

fields of different amplitudes changes the relative orientations of the magnetizations between (𝐹𝑀)1180

and (𝐹𝑀)2 layers, which leads to a change of the effective exchange field of the multilayer. This181

effect can change the efficiency of the Cooper pairs penetration through the multilayer in several182

times. The current carrier is organized on the basis of a thin strip of low-resistance normal metal,183

which ensures its lower kinetic inductance relative to the rest of the structure, which leads to the flow184

of current precisely through this layer.185
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Figure 5: Spatial distribution of the pair amplitude in the hybrid structure a) 𝑆 − (𝐹𝑀)1 − 𝑠 −
(𝐹𝑀)2− 𝑠− (𝐹𝑀)1− 𝑠− (𝐹𝑀)2−𝑁 without additional s1-layer and b) 𝑆− (𝐹𝑀)1− 𝑠− (𝐹𝑀)2− 𝑠−
(𝐹𝑀)1 − 𝑠− (𝐹𝑀)2 − 𝑠1 − 𝑁 with additional superconducting layer for parallel (blue solid line) and
anti-parallel (red dashed line) mutual orientations of magnetization between 𝐹𝑀1 and 𝐹𝑀2 layers.
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Figure 5 shows the spatial distributions of the pairing amplitude over a similar structure for186

parallel and anti-parallel orientations of the magnetization of the 𝐹𝑀1- and 𝐹𝑀2-layers. To enhance187

the effect, this element can contain an additional superconductor layer 𝑠1 with a thickness less than188

the critical thickness. In the case of a closed valve, such a structure is in the normal state, and the189

superconducting correlations in the N-layer are negligible. If the valve is open, the 𝑠1 layer goes over190

into a superconducting state leading to increase of the amplitude of pair correlations in the N-layer.191

The spatial distribution of the pairing amplitude in a structure with an additional layer 𝑠1 with similar192

parameters is shown in the figure 5(b).193
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Figure 6: Kinetic inductance of the hybrid structures 𝑆 − (𝐹𝑀)1 − 𝑠 − (𝐹𝑀)2 − 𝑠 − (𝐹𝑀)1 − 𝑠 −
(𝐹𝑀)2 − 𝑠 − 𝑁 and 𝑆 − (𝐹𝑀)1 − 𝑛 − (𝐹𝑀)2 − 𝑛 − (𝐹𝑀)1 − 𝑛 − (𝐹𝑀)2 − 𝑠1 − 𝑁 for parallel
(dark blue solid line and long-dashed green line) and antiparallel (red dashed line and orange dash-
dot line) mutual orientations of magnetization between 𝐹𝑀1 and 𝐹𝑀2 layers as functions of spacer
thickness.

Figure 6 demonstrates the dependence of the kinetic inductance on the thickness of the inter-194

mediate 𝑠− or 𝑛-layers, which determine the efficiency of the spin valve. At large thicknesses of195

intermediate layers, the valve loses efficiency. In the case of normal spacers, the transition occurs196

to a completely normal state, where the kinetic inductance of the entire structure coincides with the197

kinetic inductance of the source layer 𝑆. With a large thickness of superconducting spacers 𝑠, the198

valve system also loses efficiency, transferring the entire structure to a completely superconducting199
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state. However, at thicknesses of the order of (0.5...1) 𝜉, the maximum spin-valve effect appears, and200

the total kinetic inductance of the structure changes several times during the switch between states201

with parallel and antiparallel magnetization orientations.202

Conclusion203

We have considered a basic cell for superconducting signal neuro-computers designed for fast pro-204

cessing of a group signal with extremely low energy dissipation. It turned out that for this purpose it205

is possible to modify the previously discussed element of adiabatic superconducting neural networks.206

The ability to adjust the parameters of the studied Gauss-cell (with Gaussian-like activation function)207

is very important for in situ switching between operating modes. Using microscopic modeling, we208

have shown that the desired compact tunable passive element can be implemented in the form of a209

controllable kinetic inductance. An example is a multilayer structure consisting of a superconducting210

"source", a current-carrying layer and a spin valve with at least two magnetic layers with different211

thicknesses. The proposed tunable inductance does not require suppression of superconductivity212

in the source layer. In this case, the spin-gate effect determines the efficiency of penetration of213

superconducting correlations into the current-carrying layer, which is the reason for the change in214

inductance.215
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