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Abstract 

A key step in building regulatory acceptance of alternative or non-animal test methods has long been 

the use of interlaboratory comparisons or Round Robins (RR), in which a common test material and 

standard operating procedure is provided to all participants, who measure the specific endpoint and 

return their data for statistical comparison to demonstrate the reproducibility of the method. While there 

is currently no standard approach for comparison of modelling approaches, consensus modelling is 

emerging as a “modelling equivalent” of a RR. We demonstrate here a novel approach to evaluate the 

performance of different models for the same endpoint (nanomaterials’ zeta potential) trained using a 

common dataset, through generation of a consensus model, leading to increased confidence in the model 

predictions and underlying models. Using a publicly available dataset four research groups 

(NovaMechanics Ltd (NovaM) - Cyprus, National Technical University of Athens (NTUA) - Greece, 

QSAR Lab Ltd - Poland, and DTC Lab - India) built five distinct machine learning (ML) models for 

the in silico prediction of the zeta-potential of metal and metal oxide-nanomaterials (NMs) in aqueous 

medium. The individual models were integrated into a consensus modelling scheme, enhancing their 

predictive accuracy, and reducing their biases. The consensus models outperform the individual models, 

resulting in more reliable predictions. We propose this approach as a valuable method for increasing 

the validity of nanoinformatics models and driving regulatory acceptance of in silico new approach 

methodologies for use within an Integrated Approach to Testing and Assessment (IATA) for risk 

assessment of NMs. 

Keywords 

Consensus modelling, read-across, QSPR, round robin test, zeta potential 

Introduction 

Nanotechnology, defined as the ability to manipulate matter at the nanoscale, has opened an array of 

possibilities for multiple applications that take advantage of the unique properties of nanomaterials 
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(NMs). From targeted drug delivery to environmental sensing, the versatility of NMs makes them ideal 

candidates for a broad range of innovative applications[1]. However, the complexity and unique 

properties of these materials also present significant challenges, especially when it comes to the 

assessment of their potential adverse effects. The integration of in silico new approach methodologies 

(NAMs) within the area of nanotechnology has created a plethora of possibilities for assessment of NM 

properties and toxicity, to support and/or substitute traditional experimental methodologies[2,3].  

The field of nanoinformatics covers a broad range of computational and data-driven methodologies for 

the exposure, hazard, and risk assessment of NMs, such as quantitative structure-activity relationship 

models adapted to the specificities of NMs (nanoQSAR) and grouping/read-across models, specially 

developed to accurately predict NMs properties when small datasets are available[4–6]. These in silico 

methodologies can be used in the early steps of the safe-and-sustainable by design (SSbD) and 

development of novel NMs to filter out unpromising candidates and prioritize NMs with desired 

properties. In detail, the rational use of in silico methods allows for identification of potential hazardous 

effects caused by NMs interactions with biological systems with simultaneous decrease of workload, 

cost, research duration, and use of laboratory animals. Several computational approaches[7–9] and 

predictive models[10–12] have been presented recently for predicting various NM properties and 

toxicity effects. 

The combination of multiple NAMs, both experimental and computational, within an integrated 

approaches to testing and assessment (IATA) framework will further improve the entire risk evaluation 

of NMs and accelerate regulatory decision-making procedures[2,5,13] . An IATA scheme for the 

prediction of the short-term regional lung-deposited dose of inhaled inorganic NMs in humans 

following acute exposure and the longer-term NMs biodistribution after inhalation, has already been 

presented[14]. Another example of an IATA is the combination of predictions from two or more 

individual models (“meta-models”) under a consensus framework. Consensus models combine outputs 

from several meta-models built upon different sets of descriptors and/or machine learning (ML) 

algorithms, leading to more trustworthy results and enhancing stakeholders’ confidence.  In detail, as 

each individual model covers a specific area of the descriptors/properties space, by combining them it 
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is possible to capture a wider range of factors that influence the relationship between the NMs 

independent variables and the endpoint[15,16] and thus to approach the problem from different 

perspectives. Furthermore, by combining different models, it is possible to address the limitations of 

each one and achieve more precise predictions (e.g., by avoiding the overfitting phaenomenon when 

small training datasets are involved)[15,16]. Prediction combination can be performed in a regression 

problem through an arithmetic average or via a weighted average scheme[17]. It has been demonstrated 

that consensus QSAR models exhibit lower variability than individual meta-models, resulting in more 

reliable and accurate predictions[18,19]. In the area of nanoinformatics, various consensus approaches 

have been proposed over the past years for the prediction of different NM endpoints, such as NMs 

cellular uptake[20], zeta potential (ZP)[16] and electrophoretic mobility[21]. 

The complexity of predictive models requires the development of standardized protocols to ensure their 

accuracy and robustness. Just as laboratory experiments rely on repeatability and reproducibility to 

validate results, computational methods require similar validation processes. Special emphasis is given 

to models’ predictive accuracy. For this purpose, it is sought that nanoinformatics models comply with 

a set of predefined criteria, often supplemented by statistical methods recommended by the Organisation 

for Economic Co-operation and Development (OECD)[22] and the European Chemicals Agency 

(ECHA)[23]. In addition, there is a growing effort from various groups to enhance the transparency and 

consequently the reproducibility of their results by delivering standardized reports along with their 

models (e.g., QSAR model reporting format (QMRF)[24] and modelling data (MODA)[14] reports). 

By documenting these computational steps through the standardized reports, it is possible to deliver 

reproducible models within and between computational groups, and over time, and to conduct 

interlaboratory comparisons (ILC) or round-robin (RR) tests on the models and their outputs, like those 

performed in laboratory settings to validate a new test method or protocol[25,26]. 



 

5 

 

Figure 1: Schematic representation of a negatively charged uncoated spherical NM. The ZP corresponds 

to the electric charge at the slipping plane. 

The computational prediction of NMs ZP (Figure 1) is of high interest in the area of nanoinformatics 

during the last decade, given the role of surface charge in determining NMs interactions with 

membranes, and in driving toxicity whereby positively charged particles are generally more toxic than 

negatively charged particles of similar composition[27–29]. In fact, several in silico models for ZP have 

been developed based on different theoretical and experimental descriptors employing a range of 

approaches i.e., quantitative structure–property/feature relationship (QSPR/QSFR) modelling, read-

across and deep-learning models. Mikolajczyk et al.[16] implemented a consensus nano-QSPR scheme 

for the prediction of ZP of metal oxide nanoparticles (NPs) based on the size and a quantum mechanical 

descriptor encoding the energy of the highest occupied molecular orbital per metal atom of 15 metal-

oxide NPs. Toropov et al.[30] developed, for a set of 15 metal and metal oxide NPs, a QFPR model 

considering both the NPs molecular structure and the experimental conditions, encoded quasi-SMILES. 

Furthermore, research has explored the computational assessment of ZP in media besides water. 

Wyrzykowska et al.[31] proposed a nano-QSPR model for the prediction of the ZP of 15 NPs in a low-

concentration KCℓ solution considering the NPs ZP in water and the periodic number of the NPs metal.  
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Read-across approaches presented to date include a k-nearest neighbours (kNN) model developed by 

Varsou et al.[32] to predict the ZP of 37 metal and metal-oxide NPs based on their core type and the 

NPs main elongation (image descriptor derived from microscopy images). Papadiamantis et al.[33] 

developed a kNN/read-across model for estimation of the ZP of 69 pristine and aged NPs, considering 

the size, coating, absolute electronegativity, and periodic table descriptors. Finally, advances of 

Artificial Intelligence (AI) have been also considered in the computational assessment of ZP. Yan et 

al.[34] employed deep learning techniques and developed a convolutional neural network to predict the 

ZP of 119 NPs based on their nanostructure images. The abovementioned studies are indicative 

examples of models that have been used for the computational assessment of NPs ZP. As research 

progresses, such models are expected to become increasingly sophisticated and accurate, contributing 

to a deeper understanding of NP behaviour in diverse environments. 

The diversity of datasets and endpoints measured is challenging when comparing or combining results 

between different studies, making it crucial to ensure that data are compatible in terms of meta-data 

(e.g., used experimental protocol). Similarly, models developed using different sets of descriptors need 

to have a basis for comparison in order to drive regulatory acceptance of models. To address this 

challenge, under the NanoSolveIT EU project (https://nanosolveit.eu/) the first RR approach in 

nanoinformatics was implemented, to computationally assess the ZP of NPs.  The RR exercise involved 

four groups, from both Academia and Industry, from four countries (Cyprus, Greece, Poland, and India) 

who were asked to develop individual models for the prediction of the ZP based on a common dataset 

of metal and metal-oxide cored NPs. In this way, different descriptors were employed, and various 

modelling approaches were applied, including QSAR-type and read-across models. The developed 

models were later integrated into a consensus modelling scheme by combining the predictions of the 

individual model through average and weighted average, to acquire more robust and stable results. 

While the dataset’s extent and, consequently, the generated models’ applicability domain are rather 

limited, this initiative underscores the potential of synergistic approaches in the nanoinformatics field. 

By leveraging the collective knowledge of diverse teams and perspectives, these approaches can 

https://nanosolveit.eu/
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effectively assess the properties and toxicity of NPs and democratize decision-making processes in the 

assessment of NMs exposure, hazard, and risk.  

Materials and methods  

Data overview 

A dataset of 71 pristine engineered nanomaterials (NMs) was explored in silico in order to predict their 

zeta-potential (ZP) based on physicochemical and molecular descriptors. The physicochemical 

characterization of the NMs was performed under the EU-FP7 NanoMILE project[35] and from the 

available descriptors/properties[35], four were included in this study due to completeness of the data 

(absence of data gaps) as follows: the NMs core chemistry, coating, morphology and hydrodynamic 

diameter measured using dynamic light scattering (DLS). The ZP of the NMs was measured in water 

(pH=6.5-8.5). To enrich the library of the NMs physicochemical properties and increase the amount of 

available information, the corresponding sphere diameter (the diameter of the sphere with a surface area 

equal to the area of the NM)  was calculated, as well as three molecular descriptors commonly used in 

nanoinformatics studies[36]. These descriptors were chemical formula-related descriptors, specifically 

the number of metal and oxygen atoms present in the core’s chemical formula, and the molecular weight 

of the core compound.  

Finally, the Hamaker constants[37] of the NMs were calculated in vacuum and in water using the 

NanoSolveIT Hamaker tool (https://hamaker.cloud.nanosolveit.eu/). These calculations performed 

considering spherical and uncoated NMs, aimed to quantify the attractive (positive values) or repulsive 

(negative values) interactions between NMs, leading to agglomeration or aggregation phenomena. The 

balance between the Hamaker constant (expressing van der Waals attraction between particles) and the 

ZP values of particles (expressing their electrostatic repulsion) controls the stability of colloidal 

dispersions according to the DLVO theory[38]. For the computational analysis, the TIP3P force field 

was employed for water, while the Dreiding force field was utilized for the NMs. In the case of Zr-

doped CeO2 NMs (CexZryO2), the same density as for pure CeO2 NMs was considered to maintain 

https://cordis.europa.eu/project/id/310451
https://hamaker.cloud.nanosolveit.eu/
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consistency. It should be noted that the different working groups were free to enrich or transform the 

above-described dataset as it is explained in the next sections, aiming to cover a wider feature space 

with each individual model. All the information about the available descriptors is summarised in Table 

1. The entire dataset used in the models can be found in the Supporting Information File 1 of this 

publication. 

Table 1: Available descriptors in the dataset used to build the individual ZP models (5 models from 4 labs). 

Descriptor Symbol Units 

Chemical formula CF - 

Equivalent sphere diameter Dsph nm 

Shape group Shape - 

Coating CT - 

Hydrodynamic diameter measured by DLS DLS nm 

Molecular weight MW  g/mol 

Hamaker constant of NMs in vacuum A11 x E-20 J 

Hamaker constant of NMs in water A132 x E-20 J 

Number of metal atoms Nmetal - 

Number of oxygen atoms Noxygen - 

Sum of ionization potential energy of metals Metals_SumIP kJ/mol 

A Read-Across-derived composite function that 

encodes chemical information from all the 

selected structural and physicochemical features 

RA function  

Coefficient of variation of the similarity values 

of the close source compounds for a particular 

query compound 

CVsim  

Total number of atoms in a molecule Tot num atoms  
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Weighted standard error of the observed 

response values of the close source compounds 

for a particular query compound 

SE  

Weighted standard deviation of the observed 

response values of the close source compounds 

for a particular query compound 

SD Activity  

Standard deviation of the similarity values of the 

close source compounds for a particular query 

compound 

SD Similarity  

Average similarity values of the positive close 

source compounds for a particular query 

compound 

Pos.Avg.Sim  

Average similarity values of the negative close 

source compounds for a particular query 

compound 

Neg.Avg.Sim  

The log-transformed hydrodynamic diameter 

measured by DLS 

LOG_DLS  

Similarity value of the closest positive source 

compound 

MaxPos  

Banerjee-Roy similarity coefficient 1 𝑠𝑚
1   

Banerjee-Roy similarity coefficient 2 𝑠𝑚
2   

 

Modelling techniques 

kNN/read-across model 

The kNN/read-across model employs the k-nearest neighbours (kNN) approach, an instance-based 

method that predicts the endpoint of a sample based on its k nearest neighbours in the data space. The 



 

10 

proximity between samples is measured using Euclidean distance, which is adjusted slightly for 

categorical descriptor values using a binary value (0 in the case of same class data points or 1, 

otherwise)[39,40]. The endpoint prediction, in this case the ZP value, is the weighted average of the 

endpoint values of the k closest neighbours, with each neighbour’s weighting factor inversely 

proportional to its distance from the evaluated sample[32,39].  

The kNN algorithm can be incorporated into the general NMs read-across framework because it relies 

on the similarity of neighbouring NMs to estimate the endpoint of interest. Specifically, by identifying 

and analysing the resulting groupings, it is possible to map the prediction space into distinct clusters of 

k neighbours that can subsequently be explored to identify patterns and similarities within the 

neighbourhood space, in accordance with the ECHA’s read-across framework. The EnaloskNN 

functionality offers the advantage of not only delivering predictive results but also identifying the 

specific neighbours and their Euclidean distances, as well as enabling visualization of the overall 

prediction space[32,33]. 

Random forest regression model 

Random Forest Regressor is an ensemble learning, tree-based method. It combines multiple decision 

tree predictors to create a more robust and accurate prediction which individual trees cannot always 

provide. This algorithm constructs a forest of independent trees. Each tree is being trained on a random 

subset of data and features. The regressor’s output is calculated based on the average predictions from 

all individual trees. Some benefits of this algorithm besides its robustness include resistance to 

overfitting and the ability to process datasets with numerous variables without the need of feature 

scaling[41]. This algorithm was implemented in Python, using scikit-learn package for modelling. 

Adaboost regression model  

The development of the ZP QSPR model involved the utilization of the Adaptive Boosting (AdaBoost) 

ML methodology, implemented through Python 3.8.8 and the Scikit-Learn library (version 0.24.1). 

AdaBoost represents an early instance of leveraging boosting algorithms to address complex problem 

types within the domain of ML[42]. Like its counterpart, the Random Forest algorithm, AdaBoost 
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employs a multitude of elementary classifiers to enhance the model’s predictive ability. In brief, the 

AdaBoost model comprises an ensemble of multiple “weak” estimators, such as decision trees, each 

possessing modest individual predictive prowess. However, when integrated into an ensemble, they 

collectively augment the predictive efficiency of the model. A notable distinction between the random 

forest algorithm and AdaBoost lies in their operational frameworks. In the random forest, individual 

estimators function independently of each other, operating in parallel. On the other hand, in AdaBoost, 

the prediction process within the ensemble unfolds sequentially, with each subsequent estimator’s 

outcome influenced by its predecessor. 

Stacked PLS and MLP q-RASPR models 

The q-RASPR approach, combining read-across and QSPR, has been recently introduced and applied 

to the prediction of NM cytotoxicity[43], power conversion efficiency of organic dyes in Dye-sensitized 

solar cells[44,45], detonation heat for nitrogen containing compounds[46], and to the prediction of 

surface area of perovskite materials[47]. Both the QSPR and read-across approaches are extensively 

used for data gap filling (predicting activity/property/toxicity values of compounds devoid of 

experimentally derived endpoint values). Recently, Luechtefeld et al.[48] introduced the concept of 

classification-based Read-Across Structure-Activity Relationship (RASAR) by combining the concepts 

of read-across and QSAR using ML algorithms. Banerjee and Roy[49] merged chemical read-across 

and regression-based QSAR into quantitative RASAR (q-RASAR).  Several ML models can be applied 

including Partial Least Squares (PLS), Linear Support Vector Regression (LSVR), Random Forest (RF) 

regression, Adaboost, Multiple Layer Perceptron (MLP) regression, and kNN regression. This study 

reports the first application of q-RASPR in a stacked modelling framework. 

Apart from the supplied structural and physicochemical information of the engineered NMs, we have 

computed descriptors based on the periodic table using the tool Elemental Descriptor Calculator 

(https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/other-dtc-lab-tools). This complete 

descriptor pool was subjected to feature selection using stepwise selection and a Genetic Algorithm to 

obtain a reduced descriptor pool consisting of 72 descriptors. A grid search/best subset selection was 

applied to this reduced descriptor pool to obtain a combination of 10 different QSPR descriptors. 

https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/other-dtc-lab-tools
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Additionally, log-transformed hydrodynamic diameter (logDLS) was taken as an additional descriptor. 

These 11 QSPR descriptors were used to define similarity among the source and query compounds, 

which is an integral part of the computation of the RASPR descriptors using the tool RASAR-Desc-

Calc-v3.0.2 available from https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home. This 

tool uses three different algorithms for computing similarity, i.e., Euclidean distance-based, Gaussian 

Kernel similarity-based and Laplacian Kernel similarity-based. The selection of the best similarity 

measure and the optimization of the associated hyperparameters were performed by dividing the 

training set into calibration and validation sets, which were supplied as inputs for the tool 

Auto_RA_Optimizer-v1.0 available from https://sites.google.com/jadavpuruniversity.in/dtc-lab-

software/home. The combination of hyperparameters that generated the best predictions for the 

validation set was selected as the optimized hyperparameter setting and used to compute the RASPR 

descriptors for the training and test sets. Clubbing of the initially selected 11 QSPR descriptors with the 

RASPR descriptors, was performed – a process known as Data Fusion[50].  This complete data pool 

was subjected to feature selection to generate four different MLR q-RASPR models. The predictions 

from these models were generated for both the training and test sets since these predictive values will 

serve as descriptors for the final stacking regressors. Finally, PLS and MLP modelling algorithms were 

employed as the final stacking regressors, where the optimized settings of the hyperparameters were 

obtained by grid search on the cross-validation statistics. 

Consensus modelling 

The meta-modelling approach allows for use of the output of one modelling approach as an input to 

another or the use of a few models/algorithms in parallel or in sequence, allowing for the strengths of 

individual models to be combined and their limitations to be circumvented[15,51]. Consensus 

modelling is based on the parallel approach: a set of ML algorithms are used to investigate the available 

dataset and find relationships between the considered NMs’ features and the physicochemical 

descriptors or biological activity of interest. Each ML algorithm has its strengths and weaknesses, thus, 

there is no universal solution for modelling regression or classification cases. The choice of the adequate 

ML method depends on the problem to be solved and the available data, and in some cases multiple 

https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home
https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home
https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home
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methods are employed to decide which one works best for each case[52,53].  Depending on the amount 

of available data, different methods may be applied: in general support vector machines, decision trees, 

random forests, neural networks etc. are methods good in generalisation of trends or behaviours and 

can lead to accurate predictions. However, in cases of small datasets the same ML methods may lead 

to the overfitting and low predictivity of the model for untested samples. The idea of consensus 

modelling by combining a set of diverse algorithms for the prediction endpoint of interest is an 

efficacious manner to achieve reliable results of data-driven analysis. However, this approach is also 

open to criticism that it is even more “black box” than the individual models, and thus even more care 

needs to be taken to fully document the predictive models with their QMRFs reports and to fully 

describe the underpinning datasets.   

Here, a consensus strategy was employed in addition to the individually developed models, based on 

the combination of the predictions from the initial models generated by the four groups NovaM, NTUA, 

QSARLab and DTC Lab. Two techniques were used to derive consensus predictions: the simple 

average of the predictions of the individual models and the weighted average of the original predictions 

- i.e., giving more influence on the more reliable model predictions.  

Validation 

In line with the OECD QSAR model validation principles[22,54], all models presented in this work 

were validated externally using the exact same training and test sets, which were produced by randomly 

dividing the original dataset using a ratio of 0.75:0.25. The training subset was used each time to 

calculate-adjust the model parameters, whereas the test subset was not involved in model development, 

and it was used as an external validation set to assess the model’s performance on new (previously 

unseen) data.  

According to the OECD’s fourth principle,[22] statistical model validation is indispensable for 

assessing a model’s performance. To quantify the model’s accuracy, appropriate “fitness” metrics were 

employed, ensuring that the models’ predictions closely align with their actual values. This validation 

process helped prevent under-fitting and over-fitting phenomena. Upon training, the models generated 
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endpoint predictions for both the training and test subsets: the training subset predictions served to 

evaluate each model’s goodness-of-fit, while predictions on the test subset assessed model’s 

predictability, e.g., its ability to generalize well to new data[22]. The statistical criteria used to evaluate 

model performance are outlined below. 

The mean absolute error (𝑀𝐴𝐸, Eq. 1) and the root mean squared error (𝑅𝑀𝑆𝐸, Eq. 2) were used to 

evaluate the accuracy of the models applied on both train and test sets. When these indexes are used 

simultaneously, they permit a complete and thorough validation of prediction accuracy, regardless of 

the training-test endpoint values’ distribution level. MAE and RMSE values closer to 0, correspond to 

more reliable models.  

 
𝑀𝐴𝐸 =  

1

𝑁
∑|𝑦𝑖 − 𝑦�̂�|

𝑁

𝑖=1

 [1] 

 

 
𝑅𝑀𝑆𝐸 = √

1

𝑁
∑(𝑦𝑖 − 𝑦�̂�)

2

𝑁

𝑖=1

 [2] 

 

where 𝑁, is the number of samples, and 𝑦𝑖 and 𝑦�̂� are the actual and predicted endpoint values of the 𝑖𝑡ℎ 

sample respectively. 

The quality-of-fit between the predicted and experimental values of the training and test sets was 

expressed by the coefficient of determination (𝑅2, Eq. 3). 𝑅2 values closer to 1, correspond to models 

that fit the dataset better. 

 
𝑅2 = 1 −

∑ (𝑦𝑖 − 𝑦�̂�)
2𝑁

𝑖=1

∑ (𝑦𝑖 − �̅�)
2𝑁

𝑖=1

 [3] 

 

where 𝑁, is the number of samples, 𝑦𝑖 and 𝑦�̂�, are the actual and predicted endpoint values of the 𝑖𝑡ℎ  

sample respectively, and �̅� is the average value of the experimental endpoint values. 
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To quantify the credibility of predictions on new data (including the test set) the external explained 

variance[22] is used (𝑄𝑒𝑥𝑡
2  or 𝑄𝐹1

2 , Eq. 4), which compares the predictions for the test set samples with 

their actual endpoint values. 𝑄𝑒𝑥𝑡
2  values closer to 1, correspond to models with higher predictive power. 

 
𝑄ext
2 = 1 −

∑ (𝑦𝑖 − 𝑦�̂�)
2𝑁

𝑖=1

∑ (𝑦𝑖 − 𝑦tr̅̅ ̅̅ )
2𝑁

𝑖=1

 [4] 

 

where 𝑁, is the number of test samples, 𝑦𝑖 and 𝑦�̂�, are the actual and predicted endpoint values of the 

𝑖𝑡ℎ test sample respectively, and 𝑦tr̅̅ ̅̅ , is the averaged value of the experimental endpoints of the training 

set. 

Another variant of the external explained variance is 𝑄𝐹2
2  (Eq. 4a) which uses the averaged value of the 

experimental endpoints of the test set (𝑦𝑡𝑒𝑠𝑡̅̅ ̅̅ ̅̅ ). 

 
𝑄𝐹2
2 = 1 −

∑ (𝑦𝑖 − 𝑦�̂�)
2𝑁

𝑖=1

∑ (𝑦𝑖 − 𝑦test̅̅ ̅̅ ̅̅ )2𝑁
𝑖=1

 [4a] 

The produced models were validated internally by employing leave-one-out (LOO) cross-validation on 

the training set, to ensure that the model is robust, and no single data point is actually responsible for 

the enhanced quality of fit. The performance in Leave-One-Out (LOO) cross validation was assessed 

by calculating the 𝑄𝐿𝑂𝑂
2  (Leave-One-Out 𝑄2) – a form of cross-validated 𝑅2 of the predictions (Eq. 

5)[55].  

 
𝑄𝐿𝑂𝑂
2 = 1 −

∑ (𝑦𝑖 − 𝑦�̂�)
2𝑁

𝑖=1

∑ (𝑦𝑖 − �̅�)
2𝑁

𝑖=1

 [5] 

 

where 𝑁, is the number of training samples, 𝑦𝑖 and 𝑦�̂�, are the actual and predicted from LOO cross 

validation endpoint values of the 𝑖𝑡ℎ   sample respectively, and �̅�  is the average value of the 

experimental training endpoint values. 

Finally, the quality-of-fit and the predictive ability of the models is assessed using the statistical metrics 
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proposed by Golbraikh and Tropsha[56,57] (Eqs. 6-10, including the 𝑄𝐿𝑂𝑂
2 , Eq. 5) on the test set. 

According to Golbraikh and Tropsha,[56,58,59] a regression model is considered predictive if all of the 

conditions presented in Table 2 are satisfied. 

 
𝑟2 =

(

 
∑ (𝑦𝑖 − �̅�)(𝑦�̂� − 𝑦�̅̂�)
𝑁
𝑖=1

√∑ (𝑦𝑖 − �̅�)
2𝑁

𝑖=1 ∑ (𝑦�̂� − 𝑦�̅̂�)
2𝑁

𝑖=1 )

 

2

 [6] 

 

 𝑅0
2 = 1 −

∑ (𝑦�̂� − 𝑦�̂�
𝑟0)2𝑁

𝑖=1

∑ (𝑦�̂� − 𝑦�̅̂�)
2𝑁

𝑖=1

, where 𝑦�̂�
𝑟0 = 𝑘′𝑦 [7] 

 

 
𝑅0
′2 = 1 −

∑ (𝑦𝑖 − 𝑦𝑖
𝑟0)

2𝑁
𝑖=1

∑ (𝑦𝑖 − �̅�)
2𝑁

𝑖=1

, where 𝑦𝑖
𝑟0 = 𝑘�̂� [8] 

 

 
𝑘 =

∑ 𝑦𝑖𝑦�̂�
𝑁
𝑖=1

∑ 𝑦�̂�
2 𝑁

𝑖=1

 [9] 

 

 
𝑘′ =

∑ 𝑦𝑖𝑦�̂�
𝑁
𝑖=1

∑ 𝑦𝑖
2 𝑁

𝑖=1

 [10] 

 

where 𝑁, is the number of samples, 𝑦𝑖 and 𝑦�̂�, are the actual and predicted endpoint values of the 𝑖𝑡ℎ   

sample respectively, and �̅� and 𝑦�̅̂�, are the average endpoint values of the experimental and predicted 

values respectively. 

Table 2: Model acceptability criteria as defined by Golbraikh and Tropsha[56,58,59].  

Statistic Rule 

𝒓𝟐 > 0.6 
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𝑸𝑳𝑶𝑶
𝟐  > 0.5 

𝒓𝟐 − 𝑹𝟎
𝟐

𝒓𝟐
 𝒐𝒓 

𝒓𝟐 − 𝑹𝟎
′𝟐

𝒓𝟐
 < 0.1 

𝒌 𝒐𝒓 𝒌′ ∈ [0.85, 1.15] 

|𝑹𝟎
𝟐 − 𝑹𝟎

′𝟐| < 0.3 

 

Applicability domain 

To ensure the robustness and reliability of predictive models, particularly adhering to OECD guidelines, 

defining the applicability domain (AD) is crucial. The AD refers to the specific subset of the overall 

data space where a model can make reliable predictions through interpolation. When the model 

encounters data points beyond this designated domain, those predictions should be flagged as unreliable 

due to their extrapolation-based nature, which inherently carries more uncertainty than 

interpolation[22].  

In the present study,  the leverage method[60] was employed to assess prediction reliability, to empower 

users to apply the models with greater confidence to external datasets and real-world scenarios, having 

at the same time a clear understanding of their optimal operating parameters. 

The leverage method measures the similarity between the query samples and the training set using the 

leverage values, ℎ, which are essentially the diagonal elements of the Hat matrix[60,61] (Eq. 11). These 

values quantify the distance of each query sample from the centroid of the training set[60], taking into 

account the descriptor values employed in model development. The AD boundaries are determined by 

a predetermined threshold leverage value ℎ∗  (Eq. 12). A test prediction is deemed reliable if its 

corresponding leverage value falls below this threshold (ℎ < ℎ∗). 

 
𝐻 = 𝑋(𝑋𝑇𝑋)−1𝑋𝑇 [11] 

 

 
ℎ∗ = 3 ×

𝑝

𝑁
 [12] 
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where 𝑋 , is the table containing the descriptor matrix, 𝑝 , is the number of descriptors used in 

model[59,60], and 𝑁, is the number of samples in the training dataset. 

Results 

In the next paragraphs the five developed meta-models are briefly described. To ensure fair 

comparisons, all models were trained and tested on identical subsets of the data. More information can 

be found in the respective QMRF reports, provided as Supplementary Information Files 2-5 to this 

publication. 

kNN/read-across model 

Data preprocessing 

Initially, the z-score normalisation method was employed to standardise the descriptors in the training 

set (53 NMs), ensuring their equal contribution to the model[24]. Next, the identical normalisation 

parameters were applied to the descriptors in the test set (18 NMs). To identify the most relevant 

parameters, eliminate noise, and avoid overfitting, the BestFirst method with the CfsSubset evaluator 

were employed[39]. Four descriptors were selected to use in the model (Table 15): the NMs coating, 

their equivalent sphere diameter, their hydrodynamic diameter, and the number oxygen atoms present 

in the core’s chemical formula. To enhance the model’s performance and interpretability, the Hamaker 

constant of the NMs calculated in water and the shape group were added to the subset of the selected 

descriptors. All analysis steps, were performed in Isalos Analytics Platform[62]. 

Model development and validation 

The kNN algorithm with a value of k=7 was selected to perform a read-across assessment of the dataset. 

Similarly to the preprocessing steps, modelling was implemented in Isalos Analytics Platform using the 

Enalos+ tools and especially the EnaloskNN function.[24] This function identifies the neighbouring 

training samples for each test NM alongside the predicted values, facilitating a deeper understanding of 
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the results in terms of NM grouping and providing insights into the overall samples space. The model 

was validated following the OECD principles[22] and the key statistical metrics of internal and external 

validation are presented in Table 3. The Y-randomization test[24] was also performed 10 times, giving 

RMSE values on the test set in the range of 23.1-43.4, confirming that the predictions were not a 

coincidental outcome. In Table 4 the results of the Golbraikh and Tropsha[56,58,59] test for the 

kNN/read-cross model are presented.  

Table 3: Internal and external validation statistics of the kNN/read-across model. 

 Training set Test set 

𝑴𝑨𝑬 0.29 7.81 

𝑹𝑴𝑺𝑬 0.54 9.71 

𝑹𝟐 0.99 0.88 

𝑸𝑳𝑶𝑶
𝟐  0.62 - 

𝑸𝒆𝒙𝒕
𝟐  - 0.88 

 

Table 4: Golbraikh and Tropsha[56,58,59] test results for the kNN/read-cross model. 

Criterion Assessment Result 

𝒓𝟐 > 𝟎. 𝟔 Pass 0.894 

𝑸𝑳𝑶𝑶
𝟐 > 𝟎. 𝟓 Pass 0.622 

𝒓𝟐 − 𝑹𝟎
𝟐

𝒓𝟐
< 𝟎. 𝟏 Pass 0.001 

𝒓𝟐 − 𝑹𝟎
′𝟐

𝒓𝟐
< 𝟎. 𝟏 Pass 0.002 

|𝑹𝟎
𝟐 − 𝑹𝟎

′𝟐| < 𝟎. 𝟑 Pass 0.001 

𝟎. 𝟖𝟓 < 𝒌 < 𝟏. 𝟏𝟓 Pass 0.883 

𝟎. 𝟖𝟓 < 𝒌′ < 𝟏. 𝟏𝟔 Pass 1.012 
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Applicability domain 

The area of reliable predictions for this model was defined using the leverage method. The leverage 

threshold was calculated based on the training NMs subset and set to 0.226 (Eq. 12). The test NM 

samples had values within the range of 0.031 to 0.191, indicating that their predictions were reliable 

except the one NM sample whose leverage value was equal to 0.859. 

Random forest regression model  

Data preprocessing 

To facilitate data analysis, the unique string feature names of the chemical formula descriptors were 

converted into a binary variable. For this purpose, metal oxides (CeO2, CuO, etc.) were represented as 

0 and metals (Ag, Au, Cu, etc.) were represented as 1. For the shape group descriptor, the string names 

“Spherical”, “Square Plates” and “Rod” were one-hot encoded. Lastly, out of 22 unique coatings, 5 

categories were created (Sodium citrate, L-Arginine, PVP, Uncoated and Other) and were one hot-

encoded as well. This conversion ensured consistency and uniformity in data representation, making it 

easier to handle and analyze the data effectively. Next, Pearson’s correlation value was computed for 

each pair of descriptors. The two Hamaker constants (in water and in vacuum) had a correlation value 

of 0.97, indicating that these two features were linearly dependent. Thus, to avoid introducing 

redundancy and potential issues in the ML model, the Hamaker constant in vacuum was removed. 

Model development and validation 

A random forest regressor was trained on the training set using Jupyter notebook and the scikit-learn 

ML package. To optimize the model’s performance, the grid search algorithm was implemented to tune 

the model using 𝑄𝐿𝑂𝑂
2  metric for internal validation. To further enhance the predictive power of the 

model, recursive feature elimination (RFE) was employed to identify and eliminate descriptors that 

contributed minimally to the model’s prediction accuracy. After this extensive parameter tuning, the 

optimal model was identified (128 estimators, maximum depth of 5 and random state equal 42) as well 

as the optimal features (DLS, Coating, Equivalent Sphere diameter and MW) achieving a 𝑄𝐿𝑂𝑂
2  of 0.611 
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and 𝑅2 of 0.957 on the training set, and an 𝑅2 value of 0.941 on the test set. The key model statistics 

are presented in Table 5 and the results of the Golbraikh and Tropsha[56,58,59] tests for the random 

forest regression model are presented in Table 6. 

Table 5: Internal and external validation statistics of the random forest regression model. 

 Training set Test set 

𝑴𝑨𝑬 4.43 5.43 

𝑹𝑴𝑺𝑬 6.76 6.73 

𝑹𝟐 0.96 0.94 

𝑸𝑳𝑶𝑶
𝟐  0.61 - 

𝑸𝒆𝒙𝒕
𝟐  - 0.94 

 

Table 6: Golbraikh and Tropsha[56,58,59] test results for the random forest regression model. 

Criterion Assessment Result 

𝒓𝟐 > 𝟎. 𝟔 Pass 0.941 

𝑸𝑳𝑶𝑶
𝟐 > 𝟎. 𝟓 Pass 0.611 

𝒓𝟐 − 𝑹𝟎
𝟐

𝒓𝟐
< 𝟎. 𝟏 Pass 0.0003 

𝒓𝟐 − 𝑹𝟎
′𝟐

𝒓𝟐
< 𝟎. 𝟏 Pass 0.0004 

|𝑹𝟎
𝟐 − 𝑹𝟎

′𝟐| < 𝟎. 𝟑 Pass 0.0002 

𝟎. 𝟖𝟓 < 𝒌 < 𝟏. 𝟏𝟓 Pass 1.006 

𝟎. 𝟖𝟓 < 𝒌′ < 𝟏. 𝟏𝟔 Pass 0.936 

Applicability domain 

For the applicability domain, leverage was used to see if the NMs were within the area of reliable 

predictions. The leverage threshold, calculated on the training set, was set to ℎ∗ = 0.509. In the training 
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set, one compound had ℎ = 0.54 and in the test set a NM had ℎ = 0.94. Thus, predictions of those 2 

NMs are not considered reliable. 

AdaBoost regression model  

Data preprocessing 

The initial phase of feature selection involved the differentiation between descriptors featuring 

continuous numerical values and those conveying qualitative or “descriptive” details. Within the 

descriptive category, three distinct descriptors were identified: “Chemical formula”, “Shape group”, 

and “Coating”. The collection of descriptors characterised by continuous numerical values was 

subsequently delineated as the “continuous set” for clarity purposes. 

The transformation of the descriptive category of descriptors into binary representations was carried 

out to facilitate the inclusion of these qualitative descriptors in ML algorithms. Binary encoding allows 

for the representation of categorical variables as binary vectors, where each category variant is encoded 

as 0 or 1 respectively. This transformation is essential because many ML algorithms require input data 

to be in numerical form. By converting descriptive features into binary format using the OneHotEncoder 

from the Scikit-Learn library, we ensure compatibility with these algorithms while retaining the inherent 

information encoded within the descriptors. This obtained set is denoted as the “binary set including 

the “Chemical formula”, “Shape group”, and “Coating” descriptors. The continuous data were 

standardised using the StandardScaler module from the Scikit-Learn library, to improve comparability 

and reduce the impact of varying scales across the variables. In this process, data was transformed such 

that it has a mean of zero and a standard deviation of one.  

Next, the two sets of data: the standardised continuous set and the binary set were merged into a unified 

dataset that enabled us to explore relationships between different types of descriptors and their 

collective influence on the NMs ZP.  

During the initial modelling phase, the AdaBoost algorithm, integrated within the Scikit-Learn library, 

was utilized to analyze the comprehensive dataset comprising all descriptors. The primary objective of 

this approach was to identify the descriptors possessing the highest degree of influence for subsequent 
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modelling tasks. Additionally, pivotal parameters crucial for refining the model’s performance, 

including “n_estimators”, “random_state”, “learning_rate” were carefully selected during this stage 

based on GridSearch algorithm for tuning hyperparameters of the model[63]. Detailed insights into 

these parameters can be accessed via the documentation provided on the official Scikit-Learn 

website[64].  

 After the evaluation of the model’s feature importance, delineated in the preceding stage, five 

descriptors emerged as the most significant for the ZP prediction: DLS, Dsph, A11, MW and CT 

[encoded as 0-coated, 1-uncoated]. Each descriptor offers crucial insights into different aspects of the 

NMs’ composition, structure, and behavior, thereby serving as vital predictors for the model’s 

predictive accuracy and interpretability. 

Model development and validation 

The selected descriptors were employed in the training of the final model, which adhered to the 

methodological framework outlined above. This model was instantiated with specific parameter 

settings, as elucidated in the previous point, where AdaBoost was configured with parameters: 

n_estimators=9, random_state=786, and learning_rate=0.997. A number of estimators (n_estimators) 

were found to enhance the model’s predictive power, while the specific random_state ensures 

reproducibility of results. Additionally, the learning rate was carefully tuned to strike a balance between 

model complexity and generalization ability, ultimately resulting in a well-performing model for the 

given task. 

The model validation statistics and the results of the Golbraikh and Tropsha[56,58,59] test are 

presented in Tables 7 and 8 respectively. 

Table 7: Internal and external validation statistics of the AdaBoost regression model. 

 Training set Test set 

𝑴𝑨𝑬 7.44 8.95 

𝑹𝑴𝑺𝑬 9.98 9.91 
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𝑹𝟐 0.91 0.87 

𝑸𝑳𝑶𝑶
𝟐  0.54 - 

𝑸𝒆𝒙𝒕
𝟐  - 0.88 

 

Table 8: Golbraikh and Tropsha[56,58,59] test results for the AdaBoost regression model. 

Criterion Assessment Result 

𝒓𝟐 > 𝟎. 𝟔 Pass 0.906 

𝑸𝑳𝑶𝑶
𝟐 > 𝟎. 𝟓 Pass 0.539 

𝒓𝟐 − 𝑹𝟎
𝟐

𝒓𝟐
< 𝟎. 𝟏 Pass 0.027 

𝒓𝟐 − 𝑹𝟎
′𝟐

𝒓𝟐
< 𝟎. 𝟏 Pass 0.028 

|𝑹𝟎
𝟐 − 𝑹𝟎

′𝟐| < 𝟎. 𝟑 Pass 0 

𝟎. 𝟖𝟓 < 𝒌 < 𝟏. 𝟏𝟓 Pass 0.906 

𝟎. 𝟖𝟓 < 𝒌′ < 𝟏. 𝟏𝟔 Pass 0.974 

Stacked PLS and MLP q-RASPR models  

Data preprocessing 

1st and 2nd generation periodic table descriptors were calculated as described by Roy and Roy[65]. Some 

descriptors were also calculated using Elemental descriptors calculator software 

(https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/other-dtc-lab-tools?authuser=0). 

Basic information about the metals has been taken directly from the periodic table to calculate 

descriptors for the reported metal oxide NMs. 

Additional information on physicochemical features like Coating, Shape group, DLS (hydrodynamic 

diameter) [nm], Hamaker (self/vacuum) - A11 [x E-20 J], Hamaker (self/water) - A132 [x E-20 J] were 

also included for modelling purposes. The selected QSPR descriptors (vide infra) were used to compute 

the RASPR descriptors using the tool RASAR-Desc-Calc-v3.0.2 

https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/other-dtc-lab-tools?authuser=0
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(https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home#h.x3k58bv4frb9) after 

optimization of the associated Read-Across-based hyperparameters[66,67].   

Model development and validation 

The model development was performed following the basic steps for the generation of the MLR model 

using the Best Subset Selection (BSS) method. The data division was kept similar to the data 

partitioning used in the rest of the models to have a clear comparison of results. Further, Stepwise 

Selection (using F-value as the fitness function) and Genetic Algorithm (GA) (using 𝑀𝐴𝐸𝑡𝑟𝑎𝑖𝑛 as the 

fitness function) were implemented for feature selection followed by the BSS method to select the best 

model with the least MAE and higher𝑄𝑒𝑥𝑡
2 . 

Initially selected QSAR descriptors (obtained by the Grid Search Algorithm) 

10 descriptors (from a total of 72 descriptors) were obtained after Stepwise Selection and GA as follows: 

Hamaker (self/water), amount of Ce, amount of Zr, rod (shape), coating, the total number of atoms, 

tot_metal_alpha, Metals_SumIP, X_ActivM, and Valence electron potential. 

Additionally, we performed a correlation analysis of the descriptor DLS (hydrodynamic diameter) and 

found that it had a significant correlation with the training set response, except for four data points. This 

was because, for these compounds, the values of DLS were significantly higher than the rest of the 

training data points, therefore hindering linear correlation. Thus, we have converted the DLS descriptor 

to the corresponding log unit and added this feature to the initially selected 10 features and considered 

it for model development. Therefore, we have proceeded toward further modelling analysis using 11 

QSAR descriptors. 

RASPR descriptor computation 

Using these selected features, the read-across structure-property relationship (RASPR) descriptors[66] 

for the training and test sets were computed using the tool RASAR-Desc-Calc-v3.0.2, freely available 

from the DTC Lab tools supplementary site (https://sites.google.com/jadavpuruniversity.in/dtc-lab-

software/home#h.x3k58bv4frb9). The corresponding hyperparameter (similarity based on Euclidean 

distance with the number of close source compounds = 5) settings were obtained from the optimized 

https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home#h.x3k58bv4frb9
https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home#h.x3k58bv4frb9
https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home#h.x3k58bv4frb9
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Read-Across-based predictions for the validation set, using the calibration set as the source set (the 

calibration and validation sets were obtained by the division of the training compounds). This Read-

Across hyperparameter optimization was done using the tool Auto_RA_Optimizer-v1.0, freely 

available from the DTC Lab tools supplementary site 

(https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home#h.ucbojxjcke1c).  

The 18 different RASPR descriptors computed were fused with the initially selected QSPR descriptors 

to generate complete descriptor pools for the training and test sets – a process termed Data Fusion[50]. 

This pool was subjected to feature selection using a grid search algorithm. 

From the results of the grid search, four different MLR q-RASPR models were developed. The 

corresponding descriptors associated with the four different MLR models have been tabulated in Table 

9, while the internal and external validation metrics of these individual models have been reported in 

Table 10. Their individual predictions were used to perform stacking using a PLS algorithm (using the 

optimised number of latent variables (LVs) based on LOO cross-validation) as the final regressor 

(Figure 2), the results of which have been reported in Tables 11 and 13.  

Apart from PLS, we have also used a MLP model as the final regressor (Figure 2) after optimization of 

the hyperparameters by the GridSearchCV approach. The validation statistics are presented in Tables 

12 and 14. 

https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home#h.ucbojxjcke1c
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Figure 2: Schematic workflow for the development of the stacked PLS and MLP q-RASPR models. 
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Table 9: Descriptor combination of the MLR q-RASPR models. 

Models Desc1 Desc2 Desc3 Desc4 Desc5 Desc6 

M1 Metals_SumIP RA function CVsim Pos.Avg.Sim Neg.Avg.Sim sm
1 

M2 LOG_DLS SE SD 

Similarity 

Pos.Avg.Sim Neg.Avg.Sim sm
2 

M3 Tot num atoms LOG_DLS SD Activity MaxPos Neg.Avg.Sim sm
1 

M4 LOG_DLS SD Activity MaxPos SD Similarity Neg.Avg.Sim sm
1 

 

Table 10: Results of the individual MLR q-RASPR models. 

Models Training set Test set 

𝑹𝑻𝒓𝒂𝒊𝒏
𝟐  𝑴𝑨𝑬𝒕𝒓𝒂𝒊𝒏 𝒓𝒕𝒆𝒔𝒕

𝟐  𝑄ext
2  𝑸𝑭𝟐

𝟐  𝑴𝑨𝑬𝒕𝒆𝒔𝒕 𝑹𝑴𝑺𝑬𝑷 

M1 0.629 14.837 0.972 0.974 0.972 3.671 4.605 

M2 0.694 11.937 0.930 0.881 0.873 7.539 9.833 

M3 0.661 14.082 0.959 0.955 0.952 4.969 6.068 

M4 0.652 13.712 0.942 0.944 0.941 5.276 6.730 

 

Table 11: Stacked PLS q-RASPR Regression statistics. 

Stacked PLS q-RASPR 

(Training set statistics) 

𝑹𝑻𝒓𝒂𝒊𝒏
𝟐  𝑸𝑳𝑶𝑶

𝟐  𝑴𝑨𝑬𝑻𝒓𝒂𝒊𝒏 𝑴𝑨𝑬𝑳𝑶𝑶−𝑪𝑽 𝑹𝑴𝑺𝑬𝑪 

0.681 0.657 13.255 13.766 18.417 

Stacked PLS q-RASPR 

(Test set statistics) 

𝒓𝑻𝒆𝒔𝒕
𝟐  𝑄ext

2  𝑸𝑭𝟐
𝟐  𝑴𝑨𝑬𝑻𝒆𝒔𝒕 𝑹𝑴𝑺𝑬𝑷 

0.960 0.951 0.948 4.402 6.320 
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The optimized hyperparameter setting for the Stacked PLS q-RASPR model is LV= 1. 

Table 12: Stacked MLP q-RASPR Regression statistics. 

Stacked MLP q-RASPR 

(Training set statistics) 

𝑹𝑻𝒓𝒂𝒊𝒏
𝟐  𝑸𝑳𝑶𝑶

𝟐  𝑴𝑨𝑬𝑻𝒓𝒂𝒊𝒏 𝑴𝑨𝑬𝑳𝑶𝑶−𝑪𝑽 𝑹𝑴𝑺𝑬𝑪 

0.695 0.645 12.952 13.957 18.015 

Stacked MLP q-RASPR 

(Test set statistics) 

𝒓𝑻𝒆𝒔𝒕
𝟐  𝑄ext

2  𝑸𝑭𝟐
𝟐  𝑴𝑨𝑬𝑻𝒆𝒔𝒕 𝑹𝑴𝑺𝑬𝑷 

0.961 0.963 0.960 4.038 5.500 

 

The optimized hyperparameter settings for Stacked MLP q-RASPR model are activation=“logistic”, 

alpha=1, learning_rate_init=0.01, max_iter=1000, random_state=0, solver=“lbfgs”. 
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Table 13: Golbraikh and Tropsha[56,58,59] test results for the PLS q-RASPR model. 

Criterion Assessment Result 

𝒓𝟐 > 𝟎. 𝟔 Pass 0.960 

𝑸𝑳𝑶𝑶
𝟐 > 𝟎. 𝟓 Pass 0.657 

𝒓𝟐 − 𝑹𝟎
𝟐

𝒓𝟐
< 𝟎. 𝟏 Pass 0.001 

𝒓𝟐 − 𝑹𝟎
′𝟐

𝒓𝟐
< 𝟎. 𝟏 Pass 0.001 

|𝑹𝟎
𝟐 − 𝑹𝟎

′𝟐| < 𝟎. 𝟑 Pass 0 

𝟎. 𝟖𝟓 < 𝒌 < 𝟏. 𝟏𝟓 Pass 0.902 

𝟎. 𝟖𝟓 < 𝒌′ < 𝟏. 𝟏𝟔 Pass 1.063 

 

Table 14: Golbraikh and Tropsha[56,58,59] test results for the MLP q-RASPR model. 

Criterion Assessment Result 

𝒓𝟐 > 𝟎. 𝟔 Pass 0.961 

𝑸𝑳𝑶𝑶
𝟐 > 𝟎. 𝟓 Pass 0.645 

𝒓𝟐 − 𝑹𝟎
𝟐

𝒓𝟐
< 𝟎. 𝟏 Pass 0 

𝒓𝟐 − 𝑹𝟎
′𝟐

𝒓𝟐
< 𝟎. 𝟏 Pass 0 

|𝑹𝟎
𝟐 − 𝑹𝟎

′𝟐| < 𝟎. 𝟑 Pass 0 

𝟎. 𝟖𝟓 < 𝒌 < 𝟏. 𝟏𝟓 Pass 0.991 

𝟎. 𝟖𝟓 < 𝒌′ < 𝟏. 𝟏𝟔 Pass 0.970 

Consensus models 

The efficacy of the two proposed consensus approaches i.e., based on averaging with equal weights, 

and weighted calculations, was assessed through comparing prediction results for the test set, where the 

same training-test sets were used for the five individual models, but using different sets of descriptors 
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(Table 15). The consensus predictions using the averaging scheme were derived using the test set 

predictions of the five individual models with equal weights in the calculation of the final predictions. 

In this manner, averaged statistical parameters were calculated (Table 16).  

In the weighted average consensus scheme, the weights were calculated based on the coefficient of 

determination 𝑅𝑖
2 values of the five models on the training set as follows: 

 
�̂� =

𝑅𝑖
2

∑𝑅𝑖
2 �̂�𝑖 [13] 

 

The consensus predictions on the test set were validated for their reliability using the same statistical 

metrics and the results are presented in Table 16. The obtained results for both consensus approaches 

are much better than those of the individual models i.e., 𝑅2 and 𝑄𝑒𝑥𝑡
2  are closer to 1, while 𝑅𝑀𝑆𝐸 is 

closer to 0. This confirms the usefulness of integrating diverse ML approaches for more reliable results. 

The results of the RR exercise presented herein (Figure 3) show that the diverse ML modelling 

techniques like read-across and QSPR can be applied, and diverse sets of descriptors can be used, to 

calculate key nanomaterials properties. Nevertheless, the best results can be achieved through the 

combination of various solutions via consensus modelling, which is recommended for enhanced 

accuracy and reliability of the prediction of the most important nanomaterials endpoints.  
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Figure 3: Schematic representation of the individual and consensus models for the RR exercise. The five 

models were developed independently by four different groups and were later combined into a simple 

average and a weighted average scheme (consensus models). The consensus models present improved 

predictive accuracy compared to the individual initial models. 

Table 15: Selected descriptors per model. 

kNN/read-

across 

Random forest 

regression 

Adaboost 

regression 

PLS q-RASPR MLP - q-RASPR 

Dsph Dsph Dsph   

CT CT [unique integers] CT [binary]   

DLS DLS DLS   

 MW MW   

A132     

  A11   

Noxygen     

Shape     
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   Ypred(M1)* Ypred(M1) 

   Ypred(M2)** Ypred(M2) 

   Ypred(M3)*** Ypred(M3) 

   Ypred(M4)**** Ypred(M4) 

*Predicted values from individual q-RASPR model M1 

**Predicted values from individual q-RASPR model M2 

***Predicted values from individual q-RASPR model M3 

****Predicted values from individual q-RASPR model M4 

 

Table 16: Accuracy statistics on the test set for the five independent models and the two consensus models. 

Statistic 

kNN/read-

across 

Random forest 

regression 

Adaboost 

regression 

Stacked 

PLS - q-

RASPR 

Stacked 

MLP – q-

RASPR 

Consensus 

average 

Consensus 

weighted 

average 

𝑹𝟐 0.88 0.94 0.87 0.95 0.96 0.97 0.97 

𝑸𝒆𝒙𝒕
𝟐  0.88 0.94 0.88 0.95 0.96 0.97 0.97 

𝑴𝑨𝑬 7.81 5.43 8.95 4.40 4.04 4.01 4.35 

𝑹𝑴𝑺𝑬 9.71 6.73 9.91 6.32 5.50 4.86 5.03 

Conclusions 

In this collaborative work we have implemented a round robin (RR) exercise focused on the creation of 

two consensus models for the prediction of the zeta potential (ZP) of metal and metal-oxide core NMs 

in aqueous environment. Four distinguished nanoinformatics groups participated in this exercise, each 

developing their own models based on a shared NMs dataset.  The models developed as part of the RR 

exercise included: (i) a k-Nearest Neighbours (kNN) algorithm coupled with a read-across approach, 

enabling a nuanced exploration of the similarity space among the materials being studied; (ii) a random 

forest model and (iii) an AdaBoost regression model which stand out for their speed and computational 
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efficiency. Lastly, two quantitative read-across structure-property relationship (q-RASPR) models were 

included that combine the advantages of read-across and QSAR approaches. Each of these individual 

models has been rigorously tested and validated, adhering to the OECD principles to ensure their 

reliability and predictive accuracy, as described herein. 

The key innovation lies in the next step—combining these individually potent models into a consensus 

framework. We created two different ensemble models for this purpose. The first ensemble model was 

straightforward; it averaged the predictions coming from all four individual models. This averaging 

method effectively pooled the strengths of the individual models to produce a more robust predictive 

output. The second ensemble model took a more nuanced approach, utilising a weighted average 

scheme. Both consensus models demonstrated an improvement in predictive accuracy compared to their 

individual components. Moreover, by pooling multiple predictive approaches, these consensus models 

also minimised any biases or limitations that could be inherent in single-algorithm models. The exercise 

showed that consensus modelling, especially when involving a diversified set of ML algorithms, can 

serve as a powerful tool for enhancing the reliability and accuracy of predictions in the complex field 

of nanotechnology. 

Supporting information 

1. ZP_common_dataset.csv: The dataset used to develop the five individual models. The NMs 

used in training and test sets are also indicated. 

2. QMRF_kNN.docx: Details of the kNN/read-across model presented following the QMRF 

format. 

3. QMRF_RF.docx: Details of the random forest model presented following the QMRF format. 

4. QMRF_AdaBoost.docx: Details of the AdaBoost regression model presented following the 

QMRF format. 

5. QMRF_RASPR.docx: Details of the stacked PLS and MLP q-RASPR models presented 

following the QMRF format. 
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Abbreviations 

 AD: Applicability domain 

 DLS: Dynamic light scattering 

 ECHA: European Chemicals Agency 

 IATA: Integrated Approach to Testing and Assessment 

 ILC: Interlaboratory comparison 

 LOO: Leave-one-out 

 LV: Latent variable 

 MAE: Mean absolute error 
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 ML: Machine learning 

 MLR: Multiple linear regression 

 MODA: Modelling data (template) 

 NAMs: New approach methodologies 

 NM: Nanomaterial 

 OECD: Organisation for Economic Co-operation and Development 

 QMRF:  Quantitative structure-activity relationship model reporting format 

 q-RASPR: Quantitative read-across structure-property relationship 

 QSAR: Quantitative structure-activity relationships 

 QSFR: Quantitative structure–feature relationships 

 QSPR: Quantitative structure–property relationships 

 RFE: Recursive feature elimination 

 RMSE: Root mean squared error 

 RMSEC: Root mean squared error in calibration 

 RMSEP: Root mean squared error in prediction 

 RR: Round robin 

 ZP: Zeta potential 
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