

This open access document is posted as a preprint in the Beilstein Archives at https://doi.org/10.3762/bxiv.2024.66.v1 and is considered to be an early communication for feedback before peer review. Before citing this document, please check if a final, peer-reviewed version has been published.

This document is not formatted, has not undergone copyediting or typesetting, and may contain errors, unsubstantiated scientific claims or preliminary data.

Preprint Title	Chitosan-Supported Cul-Catalyzed Cascade Reaction of 2-Halobenzoic Acids and Amidines for the Synthesis of Quinazolinones		
Authors	Xuhong Zhao, Weishuang Li, Mengli Yang, Bojie Li, Yaoyao Zhang, Lizhen Huang and Lei Zhu		
Publication Date	18 Nov. 2024		
Article Type	Full Research Paper		
Supporting Information File 1	Supporting Information.pdf; 2.2 MB		
ORCID [®] iDs	Lei Zhu - https://orcid.org/0000-0003-4399-1855		

License and Terms: This document is copyright 2024 the Author(s); licensee Beilstein-Institut.

This is an open access work under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0). Please note that the reuse, redistribution and reproduction in particular requires that the author(s) and source are credited and that individual graphics may be subject to special legal provisions. The license is subject to the Beilstein Archives terms and conditions: https://www.beilstein-archives.org/xiv/terms. The definitive version of this work can be found at https://www.beilstein-archives.org/xiv/terms. The definitive version of this work can be found at https://doi.org/10.3762/bxiv.2024.66.v1

Chitosan-Supported Cul-Catalyzed Cascade Reaction

of 2-Halobenzoic Acids and Amidines for the Synthesis of Quinazolinones

Xuhong Zhao, Weishuang Li,* Mengli Yang, Bojie Li, Yaoyao Zhang, Lizhen Huang* and Lei Zhu*

Address: School of Chemistry and Materials Science, Hubei Provincial Engineering Research Center of Key Technologies in Modern Paper and Hygiene Products Manufacturing, Hubei Engineering University, Xiaogan 432000, China

Email: Weishuang Li - liweishuang706@hbeu.edu.cn; Lizhen Huang - hlizhen@hbeu.edu.cn; Lei Zhu - Lei.zhu@hbeu.edu.cn

* Corresponding author

Abstract

A chitosan-supported Cul (CS@Cul) catalyst was developed for the synthesis of quinazolinones from 2-halobenzoic acids (including iodine and bromine) and amidines. The reaction proceeds under mild reaction conditions, demonstrating a broad substrate scope (30 examples) and good catalytic efficiency (up to 99% yield).

Keywords

chitosan-supported Cul catalyst; cyclization reaction; quinazolinone; mild condition

Introduction

Quinazolinones are key core benzoazo heterocyclics found in many natural products and bioactive molecules. [1–3] Due to their significant biological relevance, numerous synthetic methods have been recently developed to synthesize these useful intermediates. [4-7] Among these methods, the cascade reaction between orthohalogen (e.g. chlorine, bromine or iodine) substituted benzoic acids and amidines has become a prominent route to synthesize the corresponding guinazolinones. [8-16] In 2009, Fu and co-workers found that copper(I) could effectively promote this cascade reaction for the synthesis of guinazolinones without the need for additional ligands or additives (Scheme 1a). [5,8] Since then, various copper-based catalysts, both homogeneous and heterogeneous, have been explored (Scheme 1b). [9-14] For example, Wang's group developed a magnetically recoverable and reusable Fe₃O₄ nanoparticle-supported copper(I) catalyst with excellent catalytic efficiency for quinazolinone synthesis. [9] In addition, Cai et al. reported that MCM-41-immobilized tridentate nitrogen-supported copper(I) [MCM-41-3N-Cul] served as a highly efficient, reusable heterogeneous catalyst for this cascade reaction, achieving good to excellent yields without any loss of activity even after ten cycles of simple filtration-based recovery. [10] Moreover, copper catalyst has been shown to function effectively in both organic and aqueous media. [11,12] Furthermore, dicopper(I) complexes can also be used as an effective catalyst in Ullmann-type N-arylation/cyclization of 2-bromobenzoic acids with amidines, providing the corresponding guinazolinones in good yields. [13] Despite the high efficiency of above copper catalysts in the synthesis of quinazolinones, and the wide application of chitosan-supported copper catalyst in various organic transformations, [17-19] the use of chitosan-supported copper for quinazolinone synthesis has not been reported until now. As part of our ongoing

research interest in chitosan and chitosan-supported copper catalysts in organic transformations, [20–22] we intended to investigate the use of chitosan-supported copper as a catalyst for the synthesis of quinazolinones from 2-halobenzoic acids and amidines under mild reaction conditions (Scheme 1c).

Scheme 1: Copper-catalyzed cascade reaction of 2-halobenzoic acids and amidines for the synthesis of quinazolinones

Results and Discussion

The initial reactions commenced with 2-iodobenzoic acid **1a** (0.5 mmol, 1.0 equiv) and acetamidine hydrochloride **2a** (0.75 mmol, 1.5 equiv) as model substrates, Na₂CO₃ (1.25 mmol, 2.5 equiv) as a base, and chitosan-supported copper (5.0 mol%) as the catalyst under an argon atmosphere (Table 1). First, various solvents were investigated. When nonprotonated solvents such as THF and toluene were used, the yields were relatively low (entries 1-2, 27-39% yields), indicating poor catalytic activity in these solvents. In contrast, using proton solvents (MeOH, *i*-PrOH and H₂O) led to improved yields (entries 3-5, 51-60% yields). Notably, the reaction was also successful in water, affording the target product in moderate yield (entry 5, 51% yield). Next, to further improve the yield, a mixed solvent of *i*-PrOH and H₂O was examined.

The reaction conducted with a solvent ratio of *i*-PrOH:H₂O = 4:1 gave an 84% yield (entry 6), while a ratio of *i*-PrOH:H₂O = 9:1 resulted in an 89% yield (entry 7). In the optimal solvent (*i*-PrOH: H₂O = 9:1), other chitosan supported copper catalysts, such as CS@CuBr, CS@Cu(OAc)₂, CS@Cu(acac)₂ and CS@CuSO₄ were explored, and the results showed that CS@CuI was the most effective catalyst (entries 7–11, 65–89% yields). To further enhance the reaction, the reaction temperature was increased to 90 °C, and the target product **3a** was obtained in 96% isolated yield (entry 12). Control experiments indicated poor results when no catalyst was used, with the corresponding product obtained only in 31% yield (entry 13). When CuI or chitosan alone was used as a catalyst, the reaction occurred but with less efficiency (entries 14–15, 40–80% yields). In addition, when the reaction time was reduced, the yields decreased accordingly (entries 16–18, 70–94% yields). Finally, when the reaction was carried out under open air, the catalytic activity decreased and only 45% yield of the target product was obtained (entry 19).

Table 1: (Optimization of	reaction	conditions ^a
------------	-----------------	----------	-------------------------

Entry	CS@Cu	Solvent	Temp. (°C)	Time (h)	Yield (%) ^b
1	CS@Cul	THF	80	12	39
2	CS@Cul	Toluene	80	12	27
3	CS@Cul	MeOH	80	12	55
4	CS@Cul	<i>i</i> -PrOH	80	12	60
5	CS@Cul	H ₂ O	80	12	51
6	CS@Cul	<i>i</i> -PrOH: H ₂ O (4:1)	80	12	83
7	CS@Cul	<i>i</i> -PrOH: H ₂ O (9:1)	80	12	89
8	CS@CuBr	<i>i</i> -PrOH: H ₂ O (9:1)	80	12	87
9	CS@Cu(OAc) ₂	<i>i</i> -PrOH: H ₂ O (9:1)	80	12	65

10	CS@Cu(acac) ₂	<i>i</i> -PrOH: H ₂ O (9:1)	80	12	65
11	CS@CuSO4	<i>i</i> -PrOH: H ₂ O (9:1)	80	12	67
12	CS@Cul	<i>i</i> -PrOH: H ₂ O (9:1)	90	12	99 (96) ^c
13	-	<i>i</i> -PrOH: H ₂ O (9:1)	90	12	31
14	Cul	<i>i</i> -PrOH: H ₂ O (9:1)	90	12	80
15	CS	<i>i</i> -PrOH: H ₂ O (9:1)	90	12	40
16	CS@Cul	<i>i</i> -PrOH: H ₂ O (9:1)	90	8	94
17	CS@Cul	<i>i</i> -PrOH: H ₂ O (9:1)	90	5	83
18	CS@Cul	<i>i</i> -PrOH: H ₂ O (9:1)	90	3	70
19 ^d	CS@Cul	<i>i</i> -PrOH: H ₂ O (9:1)	90	12	45

^aReaction conditions: **1a** (0.5 mmol, 1.0 equiv), acetamidine hydrochloride **2a** (0.75 mmol, 1.5 equiv), CS@Cu (5.0 mol%), Na₂CO₃ (1.25 mmol, 2.5 equiv), solvent (2.0 mL) at argon atmosphere. ^bThe yield was determined by ¹H NMR analysis with dibromomethane as an internal standard. ^cIsolated yield in parentheses. ^dThe reaction was performed under open air.

With the optimized conditions in hand, we explored the substrate scope of the CS@Cul catalyzed cascade reactions of 2-halobenzoic acids (including 2-iodobenzoic acid and 2-bromobenzoic acid) with amidines (Scheme 2). Initially, when the amidine substituent (R²) is a methyl group, we investigated the reactions with various substituted 2-halobenzoic acids. The reactivity of 2-iodobenzoic acid derivatives (**3a**-**3d**, 90-96% yields) was higher than that of 2-bromobenzoic acid derivatives (**3a**-**3d**, 57-73% yields), the electronic properties of the substituent (R²) was changed to a cyclopropyl group, the yields of all reactions decrease, especially when substituents were present on the benzene ring (**3e**-**3h**, 55-94% yields for 2-iodobenzoic acid). We then investigated the reactions of different 2-halobenzoic acid derivatives with amidines where R² was a *tert*-

butyl group. The results showed that 2-bromobenzoic acid derivatives (**3j**-**3k**, 55–65% yields) displayed lower activity compared to 2-iodobenzoic acid derivatives (**3i**-**3**I, 73–90% yields), with a decrease in reaction activity observed when substituents were presented on the benzene ring. Finally, we examined reactions with 2-halobenzoic acid derivatives where the R² substituent was a phenyl group. In this case, the reactivity of 2-iodobenzoic acid derivatives (**3m**-**3p**, 61–99% yields) was again superior to that of 2-bromobenzoic acid derivatives (**3m**-**3p**, 43–68% yields). The reactivity of 2-halobenzoic acid without substituents was obviously better than that of substituted derivatives. Overall, these results demonstrate that the reaction has a broad substrate scope, with 2-iodobenzoic acid derivatives.

Scheme 2: Substrate scope. ^aReaction conditions: **1** (0.5 mmol, 1.0 equiv), amidines hydrochloride **2** (0.75 mmol, 1.5 equiv), CS@Cul (10.0 mg, ICP: 14.6%, 5.0 mol%), Na₂CO₃ (1.25 mmol, 2.5 equiv), *i*-PrOH: H₂O = 9:1 (2.0 mL), 90 °C, 12 h, argon atmosphere; ^b**1** (0.2 mmol), amidines hydrochloride **2** (0.3 mmol, 1.5 equiv), CS@Cul (5.0 mol%), Na₂CO₃ (1.25 mmol, 2.5 equiv), *i*-PrOH: H₂O = 9:1 (2.0 mL), 90 °C, 12 h, argon atmosphere.

Conclusion

In summary, we have developed a CS@Cul-catalyzed cascade reaction of 2halobenzoic acids (including iodine and bromine derivatives) and amidines for the synthesis of quinazolinones. This approach features mild reaction conditions, broad substrate scope (30 examples), and high efficiency (up to 99% yield). In a word, this work presents a novel and efficient protocol for the construction of quinazolinones and offers significant research value.

Supporting Information

Supporting Information File 1:

Full experimental details, characterization data and copies of NMR spectra of all products.

Acknowledgements

This work was financially supported by Project of Science and Technology Research of Hubei Provincial Department of Education (Q20232704, Q20222707), Hubei Provincial Natural Science Foundation of China (2022CFB547, 2023AFA108), Ningxia Hui Autonomous Region Natural Science Foundation of China (2024AAC03316).

References

1. Szpyrka, E.; Walorczyk, S. *Food Chem.* **2013**, *141*, 3525–3530. doi: 10.1016/j.foodchem.2013.06.055

2. Esteve-Turrillas, F. A.; Mercader, J. V.; Parra, J.; Agulló, C.; Abad-Somovilla, A.; Abad-Fuentes, A. *PLoS One* **2015**, *10*, e0134042. doi: 10.1371/journal.pone.0134042

3. Lamb, J.; Fischer, E.; Rosillo-Lopez, M.; Salzmann, C. G.; Holland, J. P. *Chem. Sci.* **2019**, *10*, 8880–8888. doi: 10.1039/c9sc03736e

4. Zhong, J.-J.; To, W.-P.; Liu, Y.; Lu, W.; Che, C.-M. *Chem. Sci.* **2019**, *10*, 4883–4889. doi: 10.1039/C8SC05600E

5. Liu, X.; Fu, H.; Jiang, Y.; Zhao, Y. *Angew. Chem. Int. Ed.* **2009**, *48*, 348-351. doi: 10.1002/anie.200804675

6. Hao, S.; Yang, J.; Liu, P.; Xu, J.; Yang, C.; Li, F. *Org. Lett.* **2021**, *23*, 2553–2558. doi: 10.1021/acs.orglett.1c00475

7. Nguyen, T. B.; Ermolenko, L.; Al-Mourabit, A. *Green Chem.* **2013**, *15*, 2713–2717. doi: 10.1039/C3GC41186A

8. Huang, X.; Yang, H.; Fu, H.; Qiao, R.; Zhao, Y. *Synthesis* **2009**, *16*, 2679–2688. doi: 10.1055/s-0029-1216871

9. Yu, L.; Wang, M.; Li, P.; Wang, L. *Appl. Organometal. Chem.* **2012**, *26*, 576–582. doi: 10.1002/aoc.2902

10. He, W.; Zhao, H.; Yao, R.; Cai, M. *RSC Adv.* **2014**, *4*, 50285–50294. doi: 10.1039/c4ra09379h

11. Xu, Y.; Xie, Q.; Li, W.; Sun, H.; Wang, Y.; Shao, L. *Tetrahedron* **2015**, *71*, 4853–4858. doi: 10.1016/j.tet.2015.05.011

12. Ke, F.; Liu, C.; Zhang, P.; Xu, J.; Chen, X. *Synth. Commun.* **2018**, *48*, 3089–3098. doi: 10.1080/00397911.2018.1533974

13. Hung, M.-U.; Liao, B.-S.; Liu, Y.-H.; Peng, S.-M.; Liu, S.-T. *Appl. Organometal. Chem.* **2014**, *28*, 661–665. doi: 10.1002/aoc.3177

14. Zhang, X.; Ye, D.; Sun, H.; Guo, D.; D. Wang, D.; Huang, H.; Zhang, X.; Jiang, H.;
Liu, H. *Green Chem.* 2009, *11*, 1881–1888. doi: 10.1039/b916124b

15. Tiwari, A. R.; Bhanage, B. M. *RSC Adv.* **2015**, *5*, 57235-57239. doi: 10.1039/c5ra11159e

9

Malasala, S.; Gour, J.; Ahmad, N.; Gatadi, S.; Shukla, M.; Kaul, G.; Dasgupta, A.;
 Madhavi, Y. V.; Chopra, S.; Nanduri, S. *RSC Adv.* **2020**, *10*, 43533–43538. doi:
 10.1039/d0ra08644d

17. Zhu, L.; Li, B.; Wang, S.; Wang, W.; Wang, L.; Ding, L.; Qin, C. *Polymers* **2018**, *10*, 385–393. doi: 10.3390/polym10040385

- 18. Dekamin, M. G.; Kazemi, E.; Karimi, Z.; Mohammadalipoor, M.; Naimi-Jamal, M.
- R. Int. J. Biol. Macromol. 2016, 93, 767–774. doi: 10.1016/j.ijbiomac.2016.09.012
- 19. Babamoradi, J.; Ghorbani-Vaghei, R.; Alavinia, S. Int. J. Biol. Macromol. 2022, 209,
- 1542-1552. doi: 10.1016/j.ijbiomac.2022.04.140
- 20. Li, B.; Wen, W.; Wen, W.; Guo, H.; Fu, C.; Zhang, Y.; Zhu, L. *Molecules* **2023**, *28*, 5609–5619. doi: 10.3390/molecules28145609
- 21. Wen, W.; Han, B.; Yan, F.; Ding, L.; Li, B.; Wang, L.; Zhu, L. Nanomaterials 2018,
- 8, 326-335. doi: 10.3390/nano8050326
- 22. Chen, S.; Wen, W.; Zhao, X.; Zhang, Z.; Li, W.; Zhang, Y.; Li, B.; Zhu, L. Molecules
- 2022, 27, 7962-7970. doi: 10.3390/molecules27227962