Beilstein Arch. 2021, 202131. https://doi.org/10.3762/bxiv.2021.31.v1
Published 06 Apr 2021
A series of 2-ethoxy-4-{[3-alkyl(aryl)-4,5-dihydro-1H-1,2,4-triazol-5-on-4-yl]-azomethine}-phenyl benzenesulfonates (3) were synthesized from the reactions of 3-alkyl(aryl)-4-amino-4,5-dihydro-1H-1,2,4-triazol-5-ones (1) with 2-ethoxy-4-formyl-phenyl benzenesulfonate (2). N-acetyl derivatives (4) of compounds 3 were also obtained. Then, the compounds 3 have been treated with morpholine and 2,6-dimethylmorpholine in the presence of formaldehyde to synthesize 2-ethoxy-4-{[1-(morpholine-4-yl-methyl)-3-alkyl(aryl)-4,5-dihydro-1H-1,2,4-triazol-5-on-4-yl]-azomethine}-phenyl benzenesulfonates (5) and 2-ethoxy-4-{[1-(2,6-dimethylmorpholine-4-yl-methyl)-3-alkyl(aryl)-4,5-dihydro-1H-1,2,4-triazol-5-on-4-yl]-azomethine}-phenyl benzenesulfonates (6), respectively. The structures of twenty-six new compounds were identified by using elemental analysis, IR, 1H NMR, 13C NMR, and MS spectral data. In addition, in vitro antibacterial activities of the new compounds were evaluated against six bacteria such as Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Bacillus subtilis, Bacillus cereus and Klepsiella pneumonia according to agar well diffusion method. Furthermore, in order to determine the possible antidiabetic properties of the synthesized 1,2,4-triazole derivatives, inhibition effects on the AR enzyme were investigated and molecular docking studies were carried out to determine the receptor-ligand interactions of these compounds. IC50 values of triazole-derived compounds (6a, 6b, 6d-g) against AR enzyme were determined as 0.95 µM, 0.75 µM, 1.83 µM, 0.62 µM, 1.05 µM, 1.06 µM, respectively. Considering the docking scores and binding energies obtained docking studies, it has been shown that molecules fit very well to the active site of the AR enzyme.
Keywords: 4,5-Dihydro-1H-1,2,4-triazole . Schiff base . Mannich base . Antibacterial activity . Molecular docking . Aldose reductase
When a peer-reviewed version of this preprint is available, this information will be updated in the information box above. If no peer-reviewed version is available, please cite this preprint using the following information:
Özdemir, G.; Kılınç, N.; Manap, S.; Beytur, M.; Alkan, M.; Yüksek, H. Beilstein Arch. 2021, 202131. doi:10.3762/bxiv.2021.31.v1
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and
Zotero.
© 2021 Özdemir et al.; licensee Beilstein-Institut.
This is an open access work under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0). Please note that the reuse, redistribution and reproduction in particular requires that the author(s) and source are credited and that individual graphics may be subject to special legal provisions.
The license is subject to the Beilstein Archives terms and conditions: (https://www.beilstein-archives.org/xiv/terms)