Stimuli-responsive polypeptide nanogels loaded with α1-antitrypsin for inhibition of inflammatory mediator trypsin

Submitting author affiliation:
Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague 6, Czech Republic

Beilstein Arch. 2021, 202191. https://doi.org/10.3762/bxiv.2021.91.v1

Published 23 Dec 2021

Preprint
cc-by Logo

Abstract

A new type of hydrophilic, biocompatible, and biodegradable polypeptide nanogel depots loaded with natural serine protease inhibitor α1-antitrypsin (AAT) was applied for inhibition of inflammatory mediator trypsin. Further, poly[N5-(2-hydroxyethyl)-L-glutamine-ran-N5-propargyl-L-glutamine-ran-N5-(6-aminohexyl)-L-glutamine]-ran-N5-[2-(4-hydroxyphenyl)ethyl)-L-glutamine] (PHEG-Tyr) and Nα-L-Lysine-grafted α,β-poly[(2-propyne)-D,L-aspartamide-ran-(2-hydroxyethyl)-DL-aspartamide-ran-(2-(4-hydroxyphenyl)ethyl)-DL-aspartamide] (Nα-Lys-NG) nanogels were prepared by HRP/H2O2-mediated crosslinking in inverse miniemulsions with pH and temperature-stimuli responsive behavior confirmed by dynamic light scattering and zeta potential measurements. The loading capacity of PHEG-Tyr and Nα-Lys-NG nanogels and their release profiles were firstly optimized with bovine serum albumin (BSA) and then used for loading and release of AAT. PHEG-Tyr and Nα-Lys-NG nanogels showed different loading capacities for AAT with the maximum (20 %) achieved with Nα-Lys-NG nanogel. In both cases, the nanogels depots demonstrated a burst release of AAT during 6 h, which could be favorable for quick inhibition of trypsin. A consequent pilot in vitro inhibition study revealed that both PHEG-Tyr and Nα-Lys-NG nanogels loaded with AAT successfully inhibited the enzymatic activity of trypsin. Furthermore, the inhibitory efficiency of the AAT-loaded nanogels was higher than that of AAT itself, indicating that the negatively charged polypeptide nanogels enhance the inhibitory function of AAT loaded in the nanogel depots.

Keywords: α1-antitrypsin, inflammatory mediator, nanogel, polypeptide, trypsin

How to Cite

When a peer-reviewed version of this preprint is available, this information will be updated in the information box above. If no peer-reviewed version is available, please cite this preprint using the following information:

Šálek, P.; Dvořáková, J.; Hladysh, S.; Oleshchuk, D.; Pavlova, E.; Kučka, J.; Proks, V. Beilstein Arch. 2021, 202191. doi:10.3762/bxiv.2021.91.v1

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

OTHER BEILSTEIN-INSTITUT OPEN SCIENCE ACTIVITIES