Supporting Information
Supporting Information File 1: 1H NMR for all synthesized compounds, 13C APT-NMR spectra for compounds 6ac and 6ad and crystallographic data for compounds 6ad and 6al. | ||
Format: PDF | Size: 1.9 MB | Download |
Cite the Following Article
A new approach for the synthesis of bisindoles through AgOTf as catalyst
Jorge Beltrá, M. Concepción Gimeno and Raquel P. Herrera
Beilstein J. Org. Chem. 2014, 10, 2206–2214.
https://doi.org/10.3762/bjoc.10.228
How to Cite
Beltrá, J.; Gimeno, M. C.; Herrera, R. P. Beilstein J. Org. Chem. 2014, 10, 2206–2214. doi:10.3762/bjoc.10.228
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Lipson, V.; Shirobokova, M.; Vakula, V. Bisindolylmethanes and Relative Compounds: Synthesis, Green Chemistry, Drug Discovery and Environmental Pollution Control. ChemistrySelect 2024, 9. doi:10.1002/slct.202401220
- Bhirud, S.; Sarode, C.; Gupta, G.; Chaudhari, G. An Exceptional Valorization of CuO Nanoparticles in Ionic Liquids as an Efficient Medium for the Electrophilic Substitution of Indole Towards the Formation of Bis(indolyl)methanes. Current Nanomaterials 2024, 9, 148–157. doi:10.2174/2405461508666230508124607
- Choudhury, G.; Talukdar, H.; Chandra Deka, D. Aqueous Extract of Dillenia indica Fruit (AEDI): A Sustainable Biocatalyst for the Synthesis of Pharmacologically Important Bis(indolyl)methanes. ChemistrySelect 2024, 9. doi:10.1002/slct.202305024
- Galathri, E. M.; Kuczmera, T. J.; Nachtsheim, B. J.; Kokotos, C. G. Organocatalytic Friedel–Crafts arylation of aldehydes with indoles utilizing N-heterocyclic iod(az)olium salts as halogen-bonding catalysts. Green Chemistry 2024, 26, 825–831. doi:10.1039/d3gc03687a
- Hazra, C. K.; Singh, S. Recent Advancements in Typical Friedel–Crafts Alkylation Reactions Focused on Targeting Arene Nucleophiles. Synthesis 2023, 56, 368–388. doi:10.1055/s-0042-1751492
- Zárate-Roldán, S.; Gimeno, M. C.; Herrera, R. P. Alkylation of amines with allylic alcohols and deep eutectic solvents as metal-free and green promoters. Green Chemistry 2023, 25, 5601–5612. doi:10.1039/d3gc01017a
- Centofanti, F.; Buono, A.; Verboni, M.; Tomino, C.; Lucarini, S.; Duranti, A.; Pandolfi, P. P.; Novelli, G. Synthetic Methodologies and Therapeutic Potential of Indole-3-Carbinol (I3C) and Its Derivatives. Pharmaceuticals (Basel, Switzerland) 2023, 16, 240. doi:10.3390/ph16020240
- Santos, A. S.; Ferro, R. D.; Viduedo, N.; Maia, L. B.; Silva, A. M. S.; Marques, M. M. B. Synthesis of Bis(3-indolyl)methanes Mediated by Potassium tert-Butoxide. ChemistryOpen 2023, 12, e202200265. doi:10.1002/open.202200265
- Galathri, E. M.; Di Terlizzi, L.; Fagnoni, M.; Protti, S.; Kokotos, C. G. Friedel-Crafts arylation of aldehydes with indoles utilizing arylazo sulfones as the photoacid generator. Organic & biomolecular chemistry 2023, 21, 365–369. doi:10.1039/d2ob02214a
- Rathod, V. N.; Pawar, G. T.; Gaikwad, S. T.; Lande, M. K. Preparation, characterization and catalytic application of Zn‐based metal–organic framework catalyst for synthesis of 3,3‐(arylmethylene)bis‐1H‐indole derivatives. Journal of Chemical Technology & Biotechnology 2022, 97, 2005–2012. doi:10.1002/jctb.7071
- Singh, S.; Mahato, R.; Sharma, P.; Yadav, N.; Vodnala, N.; Kumar Hazra, C. Development of Transition-Metal-Free Lewis Acid-Initiated Double Arylation of Aldehyde: A Facile Approach Towards the Total Synthesis of Anti-Breast-Cancer Agent. Chemistry (Weinheim an der Bergstrasse, Germany) 2022, 28, e202104545. doi:10.1002/chem.202104545
- Liu, D.; Xu, H.; Hang, Y.; Lu, H. 1,6-Addition of Nitrogen Nucleophile to para-Quinone Methides Catalyzed by Recyclable Bismuth Complex: Facile Access to N-Heterocyclic Substituted Unsymmetric Triarylmethane Derivatives. Chinese Journal of Organic Chemistry 2022, 42, 796. doi:10.6023/cjoc202109026
- Sharma, V.; Brahmachari, G.; Gupta, V. K. Crystallographic structure, activity prediction, and hydrogen bonding analysis of some CSD-based 3,3'-bis-indole derivatives: A review. European Journal of Chemistry 2021, 12, 493–501. doi:10.5155/eurjchem.12.4.493-501.2145
- Muzalevskiy, V. M.; Sizova, Z. A.; Abaev, V. T.; Nenajdenko, V. G. An Efficient Approach to 2-CF3-Indoles Based on ortho-Nitrobenzaldehydes. Molecules (Basel, Switzerland) 2021, 26, 7365. doi:10.3390/molecules26237365
- Deshmukh, S. R.; Nalkar, A. S.; Thopate, S. R. Ultrasound-Promoted Pyruvic Acid Catalyzed Green Synthesis of Biologically Relevant Bis(Indolyl)Methanes Scaffold under Aqueous Condition. Polycyclic Aromatic Compounds 2021, 42, 6501–6509. doi:10.1080/10406638.2021.1984259
- Deshmukh, S. R.; Nalkar, A. S.; Thopate, S. R. Ultrasound-Promoted Pyruvic Acid Catalyzed Green Synthesis of Biologically Relevant Bis(Indolyl)Methanes Scaffold under Aqueous Condition. Polycyclic Aromatic Compounds 2021, 1–9.
- Govindhan, C.; Nagarajan, P. S. 2,6-Pyridinedicarboxylic Acid (PDCA) Catalyzed Improved Synthetic Approach for 1-Amidoalkyl Naphthols, Dihydropyrimidin-2(1H)-ones and Bis-indoles. ChemistrySelect 2021, 6, 8716–8726. doi:10.1002/slct.202102445
- Gohain, S. B.; Thakur, A. J. Au Nanostructures with Controlled Morphology, Biosynthesized from Garcinia cowa Fruit Extract, and Their Use in Microwave-Mediated Bisindole Synthesis. ChemistrySelect 2021, 6, 6773–6780. doi:10.1002/slct.202100157
- Sravya, G.; Zyryanov, G. V.; Reddy, M. R. M.; Ratnakaram, V. N.; Reddy, N. B.
- Das, A. K.; Sepay, N.; Nandy, S.; Ghatak, A.; Bhar, S. Catalytic efficiency of β-cyclodextrin hydrate-chemoselective reaction of indoles with aldehydes in aqueous medium. Tetrahedron Letters 2020, 61, 152231. doi:10.1016/j.tetlet.2020.152231