Total synthesis of the proposed structure of astakolactin

  1. ,
  2. ,
  3. ,
  4. and
Department of Applied Chemistry, Tokyo University of Science,1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
  1. Corresponding author email
Associate Editor: D. Dixon
Beilstein J. Org. Chem. 2014, 10, 2421–2427. https://doi.org/10.3762/bjoc.10.252
Received 29 Jun 2014, Accepted 01 Oct 2014, Published 17 Oct 2014
Full Research Paper
cc by logo

Abstract

The first total synthesis of the proposed structure of astakolactin, a sesterterpene metabolite isolated from the marine sponge Cacospongia scalaris, has been achieved, mainly featuring Johnson–Claisen rearrangement, asymmetric Mukaiyama aldol reaction and MNBA-mediated lactonization.

Introduction

Astakolactin (1) is a novel sesterterpene metabolite [1-5] first reported in 2003 by Roussis et al [6]. It was isolated from the marine sponge Cacospongia scalaris, which was collected from the gulf of Astakos in the Ionian Sea near Greece. The structure proposed for compound 1 is a bicyclic linear sesterterpenoid bearing a furan unit and an eight-membered lactone tethered by a non-conjugated triene chain (Figure 1). Although the proposed structure of compound 1 is unusual, given that a number of compounds isolated from sponges of the same species have a steroid-like structure [7-9], the structure does resemble that of marine furanosesterterpene natural products, such as variabilin [10,11], which exhibit a large spectrum of intriguing biological activities [12,13]. Therefore, compound 1 is also expected to possess biological activities similar to those of other furanosesterterpenes.

[1860-5397-10-252-1]

Figure 1: Proposed structure of astakolactin (1).

In addition, medium-sized lactones (8–11 membered rings) are significant structural motifs because they are found in many natural products possessing useful biological activities [14-19]. Among them, the 8-membered (and 9-membered) lactone framework is rather unusual in nature [20-24]. We have already developed the synthetic method of lactones with various ring sizes using 2-methyl-6-nitrobenzoic anhydride (MNBA) under mild reaction conditions in the presence of a nucleophilic catalyst such as 4-(dimethylamino)pyridine (DMAP) [25,26]. By using this method, we have demonstrated that unusual saturated medium-sized lactones, which are generally difficult to construct because of the ring strain and transannular interactions [27,28], can be effectively prepared [29,30]. Therefore, in order to determine the chemical structure and the expected biological activity of compound 1, we executed the total synthesis of compound 1 by exploitng the MNBA-mediated lactonization for the formation of its 8-membered lactone moiety.

Results and Discussion

The rationalized synthesis of 1 primarily involved the linear synthesis of the prenyl chain precursor from commercially available (E,E)-farnesol to form the corresponding seco-acid and the subsequent construction of the 8-membered lactone moiety. The retrosynthetic analysis of 1 is depicted in Scheme 1 [31].

[1860-5397-10-252-i1]

Scheme 1: Retrosynthetic analysis.

First, the 8-membered ring in 1 could be efficiently constructed via lactonization using MNBA with DMAP. The chain precursor 2 would be constructed via an aldol reaction with ethyl acetate, followed by anti-selective methylation [32,33]. The trisubstituted alkene moiety of the prenyl chain of 3 could be stereoselectively constructed via a Johnson orthoester–Claisen rearrangement of 4 [34-36], which would be generated from compound 5. The construction of the α-methylene-β-hydroxy ester moiety in 5, which is commonly known as a Morita–Baylis–Hillman adduct, would be achieved via an aldol reaction between aldehyde 6 and ester 7, followed by oxidative deselenization [37]. The linear precursor 8 would be prepared from (E,E)-farnesol using the previously reported method based on the Julia–Kocienski-type transformation [11].

The synthetic route to 1 is depicted in Scheme 2. It commenced from the readily accessible furanylated alcohol 13 [11], which was prepared from (E,E)-farnesol via a 10-step sequence. First, oxidation of 13 provided aldehyde 6. The aldol reaction of 6 with ester 7 in the presence of base and the subsequent oxidative deselenization of the resulting adduct 14 yielded a Morita–Baylis–Hillman-type product 5 [37] in two steps. Reduction of 5 and the regioselective protection of the less-hindered primary hydroxy group in the resulting diol 15 gave the monoprotected alcohol 16. This alcohol was then subjected to the Johnson orthoester–Claisen rearrangement, yielding only the (Z)-isomer 17 [36] in satisfactory yield. After the reduction of 17, the resulting aldehyde 18 was subjected to the aldol reaction with ethyl acetate to afford the adduct 19. Diastereoselective methylation of the ester enolate moiety of 19 with MeI afforded only the anti-product 20 [32,33], which was then subjected to the deprotection of the TBDPS group with HF·pyridine, followed by cleavage of the ethyl ester group in 21 to give the desired seco-acid 2 in high yield.

[1860-5397-10-252-i2]

Scheme 2: Synthesis of 2,3-cis-astakolactin.

Eventually, the lactonization of 2 was performed under several sets of reaction conditions (Scheme 3 and Table 1). We preliminarily attempted the Yamaguchi mixed-anhydride method [38] with 2,4,6-trichlorobenzoyl chloride (TCBC) as an activating agent, which is one of the best-known lactonization methods so far. However, the desired lactone 1 was obtained in a lower yield (33%, Table 1, entry 1) accompanied by unidentified complex products. Moreover, the S-pyridyl ester lactonization method [39] afforded no desired product at all as shown in Table 1, entry 2. Next, the MNBA-mediated lactonization [25,26,29,30] was then carried out; in sharp contrast to the first two methods, only the targeted 8-membered lactone 1 was selectively obtained in moderate yield (60%, Table 1, entry 3), and formation of the undesired β-lactone was avoided. Furthermore, the lactonization yield was improved from 60 to 71% by decreasing the substrate concentration from 2.0 to 1.0 mM (Table 1, entry 4). During the MNBA-mediated lactonization, no epimerization occurred at the α position of lactone carbonyl group. Thus, the total synthesis of the proposed structure of 1 was achieved.

[1860-5397-10-252-i3]

Scheme 3: MNBA-mediated lactonization.

Table 1: Yields of astakolactin (1) using several lactonizations.

Entry Reagents (equiv) Conditions Yield/%a
1 TCBC (1.0)/Et3N (1.1)/DMAP (6.0) THF/CH2Cl2 (2 mM)
slow add. (12 h)
33
2 (PyS)2 (1.5)/PPh3 (1.6)/Ag(OTf) (2.0) CHCl3/MeCN (2 mM)
slow add. (12 h)
N.D.
3 MNBA (1.3)/DMAP (6.0) CH2Cl2 (2 mM)
slow add. (12 h)
60
4 MNBA (1.3)/DMAP (6.0) CH2Cl2 (1 mM)
slow add. (12 h)
71

aIsolated yield.

We next focused on the synthesis of the diastereomer of 1, 2,3-trans-astakolactin (1’), to thoroughly uncover its molecular structure and stereochemistry, starting from the aldehyde 18, which was prepared according to the procedure [11] described in Scheme 2. It was postulated that the precursor 26 (Scheme 4) of the ring-closed product (1’) possessing a syn-α-methyl-β-hydroxy carboxylic acid moiety could be accessed via an asymmetric Mukaiyama aldol reaction [40-42] and our universal lactonization strategy. The synthetic route to 1’ is shown in Scheme 4.

[1860-5397-10-252-i4]

Scheme 4: Synthesis of 2,3-trans-astakolactin.

The asymmetric Mukaiyama aldol reaction of aldehyde 18 with enol silyl ether 22 (derived from S-ethyl propanethioate) in the presence of (S)-diamine-Sn(II) complex (S)-23 as the catalyst and n-Bu2Sn(OAc)2 proceeded smoothly to afford the corresponding aldol 24 as the desired (2,3)-syn adduct in good yield and excellent enantio- and diastereoselectivities (90% yield, 83% ee for syn, and 93/7 syn/anti ratio). Next, the transformation to the seco-acid 26 was achieved via successive deprotection of the TBDPS group and the thioester moiety in 25. The lactonization of 26 was then performed in the presence of MNBA and DMAP to afford 1’ with the desired stereochemistry in 62% yield.

Finally, determination of the exact structure of astakolactin was attempted by comparing the 1H and 13C NMR spectra of the synthetic compounds 1 and 1’ with those reported for astakolactin (Figure 2 and Figure 3).

[1860-5397-10-252-2]

Figure 2: Δδ (ppm) of 1H NMR chemical shifts in 1. Δδ corresponds to the difference in chemical shift for natural and synthetic products (Δδ = δ(synthetic) – δ(natural)).

[1860-5397-10-252-3]

Figure 3: Δδ (ppm) of 1H NMR chemical shifts in 1’. Δδ corresponds to the difference in chemical shift for natural and synthetic products (Δδ = δ(synthetic) – δ(natural)).

The chemical shifts for the terpene chain of the synthetic compound 1 in the 1H and 13C NMR spectra were quite similar to those in the spectra of the natural product (Figure 2; see also Supporting Information File 1). However, the chemical shifts corresponding to the lactone ring moiety (from C-1 to C-7) in the 1H and 13C NMR spectra were somewhat different from those in the corresponding spectra of the natural product. Similar discrepancies in the spectral data were also found for the diastereomer 1’ (Figure 3; see also Supporting Information File 1). These facts indicate that the proposed eight-membered lactone moiety is not comprised in the naturally occurring astakolactin. On the basis of these results, it was concluded that the structures of synthetic compounds 1 and 1’ and the natural product are very similar, but not completely identical.

Conclusion

In conclusion, we have achieved the total synthesis of the proposed structures of astakolactin (1) and its stereoisomer (1’), with a Johnson–Claisen rearrangement, an asymmetric Mukaiyama aldol reaction, and our MNBA-mediated lactonization as key steps. It was found that the 1H and 13C NMR data of synthesized 1 and 1’ are not identical with those of the natural compound. Further studies to elucidate the complete structure of astakolactin are now in progress.

Experimental

General procedure for the synthesis of 1 using the MNBA-mediated lactonization. To a solution of MNBA (14 mg, 0.04 mol) and DMAP (23 mg, 0.19 mmol) in dichloromethane (25 mL) at room temperature was slowly added a solution of the seco-acid 2 (13 mg, 0.03 mol) in dichloromethane (6.2 mL) with a mechanically driven syringe over a 12 h period. After cooling to 0 °C, saturated aqueous sodium hydrogen carbonate was added. The mixture was extracted with dichloromethane, and the organic layer was washed with brine and water and dried over sodium sulfate. After evaporation of the solvent, the crude product was purified by thin-layer chromatography on silica gel (hexane/ethyl acetate 2:1) to afford 1 (9 mg, 71%). IR (neat): 3455, 2931, 1735 cm−1; 1H NMR (CDCl3) δ 7.33 (s, 1H, 5’’-H), 7.21 (s, 1H, 2’’-H), 6.27 (s, 1H, 4’’-H), 5.33 (t, J = 7.5 Hz, 1H, 1’-H), 5.17 (t, J = 7.5 Hz, 1H, 9’-H), 5.10 (t, J = 7.5 Hz, 1H, 5’-H), 5.08 (d, J = 12.0 Hz, 1H, 7-H), 4.60 (d, J = 12.0 Hz, 1H, 7-H), 4.09–4.02 (m, 1H, 3-H), 2.96 (dq, J = 5.0, 7.0 Hz, 1H, 2-H), 2.45 (t, J = 7.0 Hz, 2H, 11’-H), 2.30 (ddd, J = 2.5, 8.5, 14.5 Hz, 1H, 5-H), 2.24 (dt, J = 7.0, 7.5 Hz, 2H, 10’-H), 2.12 (dt, J = 7.5, 7.5 Hz, 2H, 2’-H), 2.08 (dt, J = 7.5, 7.5 Hz, 2H, 6’-H), 2.01 (dd, J = 7.5, 14.5 Hz, 1H, 5-H), 2.01 (t, J = 7.5 Hz, 2H, 3’-H), 1.99 (t, J = 7.5 Hz, 2H, 7’-H), 1.94–1.85 (m, 1H, 4-H), 1.83 (d, J = 7.0 Hz, 1H, OH), 1.83–1.76 (m, 1H, 4-H), 1.59 (s, 6H, 4’-Me, 8’-Me), 1.22 (d, J = 7.0 Hz, 3H, 2-Me); 13C NMR (CDCl3) δ 176.6 (1), 142.5 (5’’), 138.8 (2’’), 136.2 (6), 135.7 (8’), 134.1 (4’), 130.5 (1’), 125.0 (3’’), 124.9 (5’), 123.8 (9’), 111.1 (4’’), 74.1 (3), 65.7 (7), 42.5 (2), 39.6 (7’), 39.4 (3’), 35.1 (4), 29.9 (5), 28.4 (10’), 26.6 (6’), 26.2 (2’), 25.0 (11’), 16.0 (4’-Me, 8’-Me), 11.6 (2-Me); HRMS: [M + Na]+ calcd for C25H36O4Na, 423.2506; found, 423.2488.

Supporting Information

Supporting Information File 1: Experimental procedures, analyitical data, and copies of 1H and 13C NMR spectra of all new compounds.
Format: PDF Size: 4.8 MB Download

Acknowledgements

The authors are grateful to Professor Vassilios Roussis (University of Athens) for giving the spectral data of astakolactin. This study was partly supported by a Research Grant from the Center for Chirality and Grants-in-Aid for Scientific Research from the Ministry of Education, Science, Sports and Culture, Japan.

References

  1. Hanson, J. R. Nat. Prod. Rep. 1986, 3, 123–132. doi:10.1039/np9860300123
    Return to citation in text: [1]
  2. Hanson, J. R. Nat. Prod. Rep. 1992, 9, 481–489. doi:10.1039/np9920900481
    Return to citation in text: [1]
  3. Hanson, J. R. Nat. Prod. Rep. 1996, 13, 529–535. doi:10.1039/np9961300529
    Return to citation in text: [1]
  4. Faulkner, D. J. Nat. Prod. Rep. 2002, 19, 1–49. doi:10.1039/b009029h
    Return to citation in text: [1]
  5. Liu, Y.; Wang, L.; Jung, J. H.; Zhang, S. Nat. Prod. Rep. 2007, 24, 1401–1429. doi:10.1039/b617259h
    Return to citation in text: [1]
  6. Tsoukatou, M.; Siapi, H.; Vagias, C.; Roussis, V. J. Nat. Prod. 2003, 66, 444–446. doi:10.1021/np020471u
    Return to citation in text: [1]
  7. Cimino, G.; De Rosa, S.; De Stefano, S.; Sodano, G. Comp. Biochem. Physiol., Part B: Comp. Biochem. 1982, 73b, 471–474. doi:10.1016/0305-0491(82)90061-x
    Return to citation in text: [1]
  8. Cafieri, F.; De Napoli, L.; Fattorusso, E.; Santacroce, C.; Sica, D. Tetrahedron Lett. 1977, 18, 477–480. doi:10.1016/S0040-4039(01)92670-x
    Return to citation in text: [1]
  9. Cimino, G.; Cafieri, F.; De Napoli, L.; Fattorusso, E. Tetrahedron Lett. 1978, 19, 2041–2044. doi:10.1016/S0040-4039(01)94744-6
    Return to citation in text: [1]
  10. Faulkner, D. J. Tetrahedron Lett. 1973, 14, 3821–3822. doi:10.1016/S0040-4039(01)87045-3
    Return to citation in text: [1]
  11. Takabe, K.; Hashimoto, H.; Sugimoto, H.; Nomoto, M.; Yoda, H. Tetrahedron: Asymmetry 2004, 15, 909–912. doi:10.1016/j.tetasy.2004.01.031
    Return to citation in text: [1] [2] [3] [4]
  12. Barrow, C. J.; Blunt, J. W.; Munro, M. H. G. J. Nat. Prod. 1989, 52, 346–359. doi:10.1021/np50062a022
    Return to citation in text: [1]
  13. Liu, Y.; Mansoor, T. A.; Hong, J.; Lee, C.-O.; Sim, C. J.; Im, K. S.; Kim, N. D.; Jung, J. H. J. Nat. Prod. 2003, 66, 1451–1456. doi:10.1021/np030268e
    Return to citation in text: [1]
  14. Nicolaou, K. C. Tetrahedron 1977, 33, 683–710. doi:10.1016/0040-4020(77)80180-4
    Return to citation in text: [1]
  15. Masamune, S.; Bates, G. S.; Corcoran, J. W. Angew. Chem., Int. Ed. Engl. 1977, 16, 585–607. doi:10.1002/anie.197705851
    Return to citation in text: [1]
  16. Paterson, I.; Mansuri, M. M. Tetrahedron 1985, 41, 3569–3624. doi:10.1016/S0040-4020(01)91380-8
    Return to citation in text: [1]
  17. Rousseau, G. Tetrahedron 1995, 51, 2777–2849. doi:10.1016/0040-4020(94)01064-7
    Return to citation in text: [1]
  18. Norcross, R. D.; Paterson, I. Chem. Rev. 1995, 95, 2041–2114. doi:10.1021/cr00038a012
    Return to citation in text: [1]
  19. Parenty, A.; Moreau, X.; Campagne, J.-M. Chem. Rev. 2006, 106, 911–939. doi:10.1021/cr0301402
    Return to citation in text: [1]
  20. Tapiolas, D. M.; Roman, M.; Fenical, W.; Stout, T. J.; Clardy, J. J. Am. Chem. Soc. 1991, 113, 4682–4683. doi:10.1021/ja00012a048
    Return to citation in text: [1]
  21. Buszek, K. R.; Sato, N.; Jeong, Y. J. Am. Chem. Soc. 1994, 116, 5511–5512. doi:10.1021/ja00091a082
    Return to citation in text: [1]
  22. McWilliams, J. C.; Clardy, J. J. Am. Chem. Soc. 1994, 116, 8378–8379. doi:10.1021/ja00097a060
    Return to citation in text: [1]
  23. Buszek, K. R.; Sato, N.; Jeong, Y. Tetrahedron Lett. 2002, 43, 181–184. doi:10.1016/S0040-4039(01)02078-0
    Return to citation in text: [1]
  24. O’Sullivan, P. T.; Buhr, W.; Fuhry, M. A. M.; Harrison, J. R.; Davies, J. E.; Feeder, N.; Marshall, D. R.; Burton, J. W.; Holmes, A. B. J. Am. Chem. Soc. 2004, 126, 2194–2207. doi:10.1021/ja038353w
    Return to citation in text: [1]
  25. Shiina, I.; Kubota, M.; Oshiumi, H.; Hashizume, M. J. Org. Chem. 2004, 69, 1822–1830. doi:10.1021/jo030367x
    Return to citation in text: [1] [2]
  26. Shiina, I. Bull. Chem. Soc. Jpn. 2014, 87, 196–233. doi:10.1246/bcsj.20130216
    Return to citation in text: [1] [2]
  27. Illuminati, G.; Mandolini, L. Acc. Chem. Res. 1981, 14, 95–102. doi:10.1021/ar00064a001
    Return to citation in text: [1]
  28. Galli, C.; Mandolini, L. Eur. J. Org. Chem. 2000, 3117–3125. doi:10.1002/1099-0690(200009)2000:18<3117::AID-EJOC3117>3.0.CO;2-5
    Return to citation in text: [1]
  29. Shiina, I.; Hashizume, M.; Yamai, Y.; Oshiumi, H.; Shimazaki, T.; Takasuna, Y.; Ibuka, R. Chem. – Eur. J. 2005, 11, 6601–6608. doi:10.1002/chem.200500417
    Return to citation in text: [1] [2]
  30. Shiina, I. Chem. Rev. 2007, 107, 239–273. doi:10.1021/cr050045o
    Return to citation in text: [1] [2]
  31. Shibamoto, K.; Fukui, H.; Shiina, I. Abstracts of Papers, 49th Symposium on the Chemistry of Natural Products, Sapporo, 2007, 49, 569–574. http://ci.nii.ac.jp/lognavi?name=nels&lang=en&type=pdf&id=ART0008707858
    Return to citation in text: [1]
  32. Seebach, D.; Wasmuth, D. Helv. Chim. Acta 1980, 63, 197–200. doi:10.1002/hlca.19800630118
    Return to citation in text: [1] [2]
  33. Seebach, D.; Aebi, J.; Wasmuth, D. Org. Synth. 1985, 63, 109.
    Return to citation in text: [1] [2]
  34. Johnson, W. S.; Werthemann, L.; Bartlett, W. R.; Brocksom, T. J.; Li, T.-T.; Faulkner, D. J.; Petersen, M. R. J. Am. Chem. Soc. 1970, 92, 741–743. doi:10.1021/ja00706a074
    Return to citation in text: [1]
  35. Castro, A. M. M. Chem. Rev. 2004, 104, 2939–3002. doi:10.1021/cr020703u
    Return to citation in text: [1]
  36. Trost, B. M.; Machacek, M. R.; Tsui, H. C. J. Am. Chem. Soc. 2005, 127, 7014–7024. doi:10.1021/ja050340q
    Return to citation in text: [1] [2]
  37. Shiina, I.; Yamai, Y.; Shimazaki, T. J. Org. Chem. 2005, 70, 8103–8106. doi:10.1021/jo051276y
    Return to citation in text: [1] [2]
  38. Inanaga, J.; Hirata, K.; Saeki, H.; Katsuki, T.; Yamaguchi, M. Bull. Chem. Soc. Jpn. 1979, 52, 1989–1993. doi:10.1246/bcsj.52.1989
    Return to citation in text: [1]
  39. Corey, E. J.; Nicolaou, K. C. J. Am. Chem. Soc. 1974, 96, 5614–5616. doi:10.1021/ja00824a073
    Return to citation in text: [1]
  40. Mukaiyama, T.; Kobayashi, S.; Uchiro, H.; Shiina, I. Chem. Lett. 1990, 19, 129–132. doi:10.1246/cl.1990.129
    Return to citation in text: [1]
  41. Kobayashi, S.; Uchiro, H.; Fujishita, Y.; Shiina, I.; Mukaiyama, T. J. Am. Chem. Soc. 1991, 113, 4247–4252. doi:10.1021/ja00011a030
    Return to citation in text: [1]
  42. Shiina, I. Chem. Rec. 2014, 14, 144–183. doi:10.1002/tcr.201300022
    Return to citation in text: [1]
Other Beilstein-Institut Open Science Activities