A simple copper-catalyzed two-step one-pot synthesis of indolo[1,2-a]quinazoline

  1. 1,2 ,
  2. 2 ,
  3. 2 and
  4. 1,2
1Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P. R. China
2CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China
  1. Corresponding author email
Associate Editor: J. P. Wolfe
Beilstein J. Org. Chem. 2014, 10, 2441–2447. https://doi.org/10.3762/bjoc.10.254
Received 03 Jun 2014, Accepted 08 Aug 2014, Published 21 Oct 2014
Full Research Paper
cc by logo

Abstract

A convenient CuI/L-proline-catalyzed, two-step one-pot method has been developed for the preparation of indolo[1,2-a]quinazoline derivatives using a sequential Ullmann-type C–C and C–N coupling. This protocol provides an operationally simple and rapid strategy for preparing indolo[1,2-a]quinazoline derivatives and displays good functional group tolerance. All the starting materials are commercial available or can be easily prepared.

Introduction

Indole motifs are important in natural products and pharmaceutical compounds [1-5]. In particular, tetracyclic compounds containing the indole substructure represent an important structural motif in a variety of bioactive compounds, such as antitumor agents A [6] and antifungal agents B [7] (Figure 1). Therefore, it is necessary to develop efficient and convenient methods to prepare nitrogen-containing tetracyclic compounds incorporating the bioactive indole motif in organic chemistry and medicinal chemistry.

[1860-5397-10-254-1]

Figure 1: Representative examples of bioactive tetracyclic compounds containing the indole motif.

Over the past decades, copper catalysts have been proven highly powerful for various cross-coupling reactions, including Ullmann-type couplings of aryl halides with active methylene compounds such as ethyl acetoacetate, malononitrile, cyanoacetate and their equivalents [8-15]. Copper-catalyzed domino reactions have also been used in the synthesis of nitrogen-containing compounds [16-20]. Ma et al reported a convenient method for the synthesis of 2-(trifluoromethyl)indoles by introducing the trifluoroacetyl group to activate the CuI/L-proline-catalyzed system [21]. Zhao [22] and Kobayashi [23] reported the synthesis of 2-amino-1H-indole derivatives using the same kind of copper-catalyzed system. Meanwhile, the Ullmann condensation is a powerful method for C–N coupling [24-26], especially the N-arylation of nitrogen-containing heterocycles such as indoles [27,28]. Indolo[1,2-a]quinazoline is a kind of tetracyclic compounds containing the indole motif that has been constructed by intramolecular [3 + 2] cycloadditions of azido-ketenimines and azido-carbodiimides (Scheme 1) [29]. The available starting materials for the synthesis of these compounds, however, are limited. Very recently, Perumal [30] reported an efficient method for the synthesis of indolo[1,2-a]quinazoline through a Cu(I)-catalyzed intramolecular domino cyclization. Based on the previous work for the copper-catalyzed synthesis of 2-amino-1H-indole derivatives and copper-catalyzed N-arylation, we herein report a simple and efficient one-pot method to synthesize indolo[1,2-a]quinazolines by a sequential Ullmann-type C–C and C–N coupling. Compared to the previous methods [29,30], the advantages of our method are as following: (1) All the starting materials are commercially available or easily prepared. (2) Functionalized indolo[1,2-a]quinazoline derivatives can be synthesized, especially 7-cyano- or 7-sulfonyl-substituted indolo[1,2-a]quinazoline derivatives. (3) This protocol is performed as a two-step reaction in one pot.

[1860-5397-10-254-i1]

Scheme 1: Synthetic route for indolo[1,2-a]quinazoline derivatives by a sequential Ullmann-type C–C and C–N coupling in one pot.

Results and Discussion

Substituted N-(2-iodophenyl)acetamides 1 were synthesized from substituted 2-iodoaniline by acetylation [31,32]. Substituted o-iodobenzaldehydes 3 were prepared from 2-iodobenzoic acid derivatives by reduction and PCC oxidation [33].

Initially, N-(2-iodophenyl)acetamide (1a), malononitrile (2a) and 2-iodobenzaldehyde (3a) were chosen as model substrates to optimize reaction conditions including the catalysts, bases and solvents under argon atmosphere. Based on the previous work [22], four copper catalysts were screened at 80 °C using L-proline as ligand, and K2CO3 as base in a mixed solvent of DMSO and H2O (volume ratio 1:1) (Table 1, entries 1–4). To our delight, the desired product 4a was obtained in 36% yield using CuI as catalyst and 50% yield with Cu2O (Table 1, entries 1 and 4). Considering that the formation of imine occurs in the second step, the presence of water in this system may hinder the reaction. To account for this, DMSO was chosen as solvent, and a higher yield (72%) was obtained using CuI as the catalyst (Table 1, entry 6). The reactivity decreased slightly when K2CO3 was replaced with Cs2CO3 as the base (Table 1, entry 7). However, when a weaker base (K3PO4) or an organic base (DBU) was used, the conversions of starting materials were lower (Table 1, entries 8 and 9). Some other solvents were investigated, iPrOH resulted in only trace of product, while no product was detected with 1,4-dioxane and DMF led to low yield (18%) (Table 1, entries 10–12). Among the ligands screened, L-proline was more beneficial to the catalysis than L-hydroxyproline and picolinic acid (Table 1, entries 6, 13 and 14). When the reaction temperature was changed to 70 °C only traces of product were detected (Table 1, entry 15). Eventually, CuI, the inexpensive ligand L-proline and two equivalents of K2CO3 as the base in DMSO were identified as the most efficient system (Table 1, entry 6).

Table 1: Optimization of the reaction conditions.a

[Graphic 1]
Entry Catalyst Ligandb Base Solvent Yield (%)c
1 CuI A K2CO3 DMSO/H2Od 36
2 CuBr A K2CO3 DMSO/H2O 21
3 Cu(OAc)2 A K2CO3 DMSO/H2O 16
4 Cu2O A K2CO3 DMSO/H2O 50
5 Cu2O A K2CO3 DMSO 45
6 CuI A K2CO3 DMSO 72
7 CuI A Cs2CO3 DMSO 60
8 CuI A K3PO4 DMSO N.D.
9 CuI A DBU DMSO N.D.
10 CuI A K2CO3 DMF 18
11 CuI A K2CO3 iPrOH trace
12 CuI A K2CO3 1,4-dioxane N.R.
13 CuI B K2CO3 DMSO 38
14 CuI C K2CO3 DMSO 31
15e CuI A K2CO3 DMSO trace

aReaction conditions: 1a (0.38 mmol ), 2a (0.46 mmol, 1.2 equiv), catalyst (0.038 mmol, 0.1 equiv), ligand (0.076 mmol, 0.2 equiv), base (0.76 mmol, 2 equiv) in 0.77 mL of solvent under argon atmosphere at 80 °C for 12 h; then 3a in 0.77 mL of solvent, another 12 h. bA = L-proline, B = L-hydroxyproline, C = picolinic acid. cIsolated yield. dDMSO/H2O 1:1. eReaction temperature: 70 °C.

With the optimized conditions in hand, the scope of the copper-catalyzed reactions of substituted N-(2-iodophenyl)acetamides with malononitriles and substituted o-iodobenzaldehydes was investigated. As summarized in Table 2, the desired products 4a4q were obtained in moderate to good yields (34–72%) by treatment of various substituted N-(2-iodophenyl)acetamides 1a1k with active methylene compounds 2a2c and substituted o-iodobenzaldehydes 3a3e. For N-(2-iodophenyl)acetamide substrates, an electron-donating p-methyl group afforded a good isolated yield of the desired product (Table 2, entry 2). However, substrate 1c with an electron-donating p-methoxy group was found to decrease the yield of the corresponding product (Table 2, entry 3). This result may be attributed to its low stability during the reaction. In comparison, electron-withdrawing p-trifluoromethyl and ester-substituted N-(2-iodophenyl)acetamides led to decreased yields of the desired compounds (Table 2, entries 4 and 5). Various halogens (F, Cl, Br) in para-position were well-tolerated on substrates 1 (Table 2, entries 6–8). Then, halogen-substituents (F, Cl) in meta position gave moderate yields (Table 2, entries 9 and 10). While a m-ester group on reactant 1k resulted in a decreased yield (Table 2, entry 11). Other types of acetonitriles substituted with electron-withdrawing groups (–CO2Me, –SO2Me, –SO2Ph, and –PO(OEt)2) were also investigated. Unfortunately, –CO2Me and –PO(OEt)2 failed to afford the desired product under the same conditions, while –SO2Me and –SO2Ph produced moderate isolated yields of the target products (Table 2, entries 12 and 13). Furthermore, the catalytic system tolerated a variety of substituted o-iodobenzaldehydes in the reaction. For o-iodobenzaldehyde substrates, electron-donating methoxy groups decreased the yield (Table 2, entry 14). However, a methyl group at the para-position of iodine in reactant 3c resulted in a good yield (Table 2, entry 15). Halogen-substituted (F, Cl) substrates 3 also provided the desired products with moderate yields (Table 2, entries 16 and 17).

Table 2: Synthesis of indolo[1,2-a]quinazolines 4.a

[Graphic 2]
Entry 1 2 3 Product Yield (%)b
1 [Graphic 3]
1a
[Graphic 4]
2a
[Graphic 5]
3a
[Graphic 6]
4a
72
2 [Graphic 7]
1b
2a 3a [Graphic 8]
4b
71
3 [Graphic 9]
1c
2a 3a [Graphic 10]
4c
45
4 [Graphic 11]
1d
2a 3a [Graphic 12]
4d
49
5 [Graphic 13]
1e
2a 3a [Graphic 14]
4e
51
6 [Graphic 15]
1f
2a 3a [Graphic 16]
4f
63
7 [Graphic 17]
1g
2a 3a [Graphic 18]
4g
49
8 [Graphic 19]
1h
2a 3a [Graphic 20]
4h
56
9 [Graphic 21]
1i
2a 3a [Graphic 22]
4i
51
10 [Graphic 23]
1j
2a 3a [Graphic 24]
4j
54
11 [Graphic 25]
1k
2a 3a [Graphic 26]
4k
37
12 1a [Graphic 27]
2b
3a [Graphic 28]
4l
52
13 1a [Graphic 29]
2c
3a [Graphic 30]
4m
53
14 1a 2a [Graphic 31]
3b
[Graphic 32]
4n
32
15 1a 2a [Graphic 33]
3c
[Graphic 34]
4o
64
16 1a 2a [Graphic 35]
3d
[Graphic 36]
4p
54
17 1a 2a [Graphic 37]
3e
[Graphic 38]
4q
55

aReaction conditions: 1 (100 mg, 1 equiv), 2 (1.2 equiv), catalyst (0.1 equiv), ligand (0.2 equiv), base (2 equiv) in DMSO (0.5 M) under argon atmosphere at 80 °C for 12 h; then 3 in DMSO , another 12 h. bIsolated yield.

Conclusion

In conclusion, we have developed a simple and efficient Cu-catalyzed methodology for the synthesis of indolo[1,2-a]quinazoline derivatives. This approach produced nitrogen-containing tetracyclic compounds in moderate to good yields from simple starting materials. This method will provide an opportunity for the construction of diverse and useful nitrogen-containing tetracyclic compounds that incorporate the bioactive indole motif in organic chemistry and medicinal chemistry.

Experimental

General procedure for the synthesis of indolo[1,2-a]quinazolines 4a4q

A dry sealed tube was charged with a magnetic stirrer, substituted N-(2-iodophenyl)acetamide (100 mg for each example, 0.38 mmol), malononitrile or 2-sulfonylacetonitriles (0.46 mmol, 1.2 equiv), CuI (0.038 mmol, 0.1 equiv), L-proline (0.076 mmol, 0.2 equiv), and K2CO3 (0.76 mmol, 2 equiv) in 0.77 mL of DMSO. The tube was evacuated and backfilled with argon and the process was repeated three times. The mixture was stirred at 80 °C for 12 h under an argon atmosphere. After the starting material was consumed completely, 2-iodobenzaldehyde (0.4 mmol, 1.05 equiv) with 0.77 mL of DMSO was charged successively to the tube via syringe, and then the resulting mixture was stirred at 80 °C for another 12 h under an argon atmosphere. After the reaction was complete, the reaction mixture was cooled to room temperature and the reaction mixture was partitioned between ethyl acetate or dichloromethane and water. The organic layer was separated and the aqueous layer was extracted with ethyl acetate or dichloromethane for three times. The combined organic solution was washed with water, brine, dried over anhydrous Na2SO4, and concentrated under reduced pressure to give the crude product. Purification by chromatography on silica gel using petroleum ether/ethyl acetate or dichloromethane/ethyl acetate as eluent provided the desired product.

Supporting Information

Supporting Information File 1: General information, experimental details, characterization data and copies of 1H and 13C NMR spectra.
Format: PDF Size: 2.2 MB Download

Acknowledgements

We gratefully acknowledge financial support from the National Natural Science Foundation of China (Grants 21021063, 91229204, and 81025017), sponsored by Program of Shanghai Subject Chief Scientist (Grant12 XD1407100).

References

  1. Aygun, A.; Pindur, U. Curr. Med. Chem. 2003, 10, 1113–1127. doi:10.2174/0929867033457511
    Return to citation in text: [1]
  2. Rodrigues de Sá Alves, F.; Barreiro, E. J.; Manssour Fraga, C. A. Mini-Rev. Med. Chem. 2009, 9, 782–793. doi:10.2174/138955709788452649
    Return to citation in text: [1]
  3. Ishikura, M.; Yamada, K.; Abe, T. Nat. Prod. Rep. 2010, 27, 1630–1680. doi:10.1039/c005345g
    Return to citation in text: [1]
  4. Welsch, M. E.; Snyder, S. A.; Stockwell, B. R. Curr. Opin. Chem. Biol. 2010, 14, 347–361. doi:10.1016/j.cbpa.2010.02.018
    Return to citation in text: [1]
  5. Pons, V.; Beaumont, S.; Dau, M. E. T. H.; Iorga, B. I.; Dodd, R. H. ACS Med. Chem. Lett. 2011, 2, 565–570. doi:10.1021/ml200024y
    Return to citation in text: [1]
  6. Vangrevelinghe, E.; Zimmermann, K.; Schoepfer, J.; Portmann, R.; Fabbro, D.; Furet, P. J. Med. Chem. 2003, 46, 2656–2662. doi:10.1021/jm030827e
    Return to citation in text: [1]
  7. Xu, H.; Fan, L.-l. Eur. J. Med. Chem. 2011, 46, 364–369. doi:10.1016/j.ejmech.2010.10.022
    Return to citation in text: [1]
  8. Okuro, K.; Furuune, M.; Miura, M.; Nomura, M. J. Org. Chem. 1993, 58, 7606–7607. doi:10.1021/jo00078a053
    Return to citation in text: [1]
  9. Ma, D.; Cai, Q. Acc. Chem. Res. 2008, 41, 1450–1460. doi:10.1021/ar8000298
    Return to citation in text: [1]
  10. Monnier, F.; Taillefer, M. Angew. Chem., Int. Ed. 2008, 47, 3096–3099. doi:10.1002/anie.200703209
    Return to citation in text: [1]
  11. Wang, B.; Lu, B.; Jiang, Y.; Zhang, Y.; Ma, D. Org. Lett. 2008, 10, 2761–2763. doi:10.1021/ol800900a
    Return to citation in text: [1]
  12. Wang, F.; Liu, H.; Fu, H.; Jiang, Y.; Zhao, Y. Org. Lett. 2009, 11, 2469–2472. doi:10.1021/ol900847t
    Return to citation in text: [1]
  13. Xie, X.; Cai, G.; Ma, D. Org. Lett. 2005, 7, 4693–4695. doi:10.1021/ol0518838
    Return to citation in text: [1]
  14. Xie, X.; Chen, Y.; Ma, D. J. Am. Chem. Soc. 2006, 128, 16050–16051. doi:10.1021/ja066991j
    Return to citation in text: [1]
  15. Yip, S. F.; Cheung, H. Y.; Zhou, Z.; Kwong, F. Y. Org. Lett. 2007, 9, 3469–3472. doi:10.1021/ol701473p
    Return to citation in text: [1]
  16. Adepu, R.; Sunke, R.; Meda, C. L. T.; Rambabu, D.; Krishna, G. R.; Reddy, C. M.; Deora, G. S.; Parsa, K. V. L.; Pal, M. Chem. Commun. 2013, 49, 190–192. doi:10.1039/c2cc37070k
    Return to citation in text: [1]
  17. Liu, T.; Wang, R.; Yang, H.; Fu, H. Chem. – Eur. J. 2011, 17, 6765–6771. doi:10.1002/chem.201100690
    Return to citation in text: [1]
  18. Lu, J.; Gong, X.; Yang, H.; Fu, H. Chem. Commun. 2010, 46, 4172–4174. doi:10.1039/c0cc00185f
    Return to citation in text: [1]
  19. Sunke, R.; Adepu, R.; Kapavarapu, R.; Chintala, S.; Meda, C. L. T.; Parsa, K. V. L.; Pal, M. Chem. Commun. 2013, 49, 3570–3572. doi:10.1039/c3cc41337c
    Return to citation in text: [1]
  20. Jiang, M.; Li, J.; Wang, F.; Zhao, Y.; Zhao, F.; Dong, X.; Zhao, W. Org. Lett. 2012, 14, 1420–1423. doi:10.1021/ol3001624
    Return to citation in text: [1]
  21. Chen, Y.; Wang, Y.; Sun, Z.; Ma, D. Org. Lett. 2008, 10, 625–628. doi:10.1021/ol7029382
    Return to citation in text: [1]
  22. Yang, X.; Fu, H.; Qiao, R.; Jiang, Y.; Zhao, Y. Adv. Synth. Catal. 2010, 352, 1033–1038. doi:10.1002/adsc.200900887
    Return to citation in text: [1] [2]
  23. Kobayashi, K.; Komatsu, T.; Yokoi, Y.; Konishi, H. Synthesis 2011, 764–768. doi:10.1055/s-0030-1258422
    Return to citation in text: [1]
  24. Evano, G.; Blanchard, N.; Toumi, M. Chem. Rev. 2008, 108, 3054–3131. doi:10.1021/cr8002505
    Return to citation in text: [1]
  25. Altman, R. A.; Koval, E. D.; Buchwald, S. L. J. Org. Chem. 2007, 72, 6190–6199. doi:10.1021/jo070807a
    Return to citation in text: [1]
  26. Davis, O. A.; Hughes, M.; Bull, J. A. J. Org. Chem. 2013, 78, 3470–3475. doi:10.1021/jo400120r
    Return to citation in text: [1]
  27. Antilla, J. C.; Klapars, A.; Buchwald, S. L. J. Am. Chem. Soc. 2002, 124, 11684–11688. doi:10.1021/ja027433h
    Return to citation in text: [1]
  28. Ziegler, D. T.; Choi, J.; Muñoz-Molina, J. M.; Bissember, A. C.; Peters, J. C.; Fu, G. C. J. Am. Chem. Soc. 2013, 135, 13107–13112. doi:10.1021/ja4060806
    Return to citation in text: [1]
  29. Alajarin, M.; Bonillo, B.; Ortin, M.-M.; Orenes, R.-A.; Vidal, A. Org. Biomol. Chem. 2011, 9, 6741–6749. doi:10.1039/c1ob05745f
    Return to citation in text: [1] [2]
  30. Kiruthika, S. E.; Perumal, P. T. Org. Lett. 2014, 16, 484–487. doi:10.1021/ol403365t
    Return to citation in text: [1] [2]
  31. Kotha, S.; Shah, V. R. Eur. J. Org. Chem. 2008, 1054–1064. doi:10.1002/ejoc.200700921
    Return to citation in text: [1]
  32. Shimada, T.; Nakamura, I.; Yamamoto, Y. J. Am. Chem. Soc. 2004, 126, 10546–10547. doi:10.1021/ja047542r
    Return to citation in text: [1]
  33. Zhou, P.-X.; Luo, J.-Y.; Zhao, L.-B.; Ye, Y.-Y.; Liang, Y.-M. Chem. Commun. 2013, 49, 3254–3256. doi:10.1039/c3cc40577j
    Return to citation in text: [1]
Other Beilstein-Institut Open Science Activities