Abstract
A convenient CuI/L-proline-catalyzed, two-step one-pot method has been developed for the preparation of indolo[1,2-a]quinazoline derivatives using a sequential Ullmann-type C–C and C–N coupling. This protocol provides an operationally simple and rapid strategy for preparing indolo[1,2-a]quinazoline derivatives and displays good functional group tolerance. All the starting materials are commercial available or can be easily prepared.
Introduction
Indole motifs are important in natural products and pharmaceutical compounds [1-5]. In particular, tetracyclic compounds containing the indole substructure represent an important structural motif in a variety of bioactive compounds, such as antitumor agents A [6] and antifungal agents B [7] (Figure 1). Therefore, it is necessary to develop efficient and convenient methods to prepare nitrogen-containing tetracyclic compounds incorporating the bioactive indole motif in organic chemistry and medicinal chemistry.
Over the past decades, copper catalysts have been proven highly powerful for various cross-coupling reactions, including Ullmann-type couplings of aryl halides with active methylene compounds such as ethyl acetoacetate, malononitrile, cyanoacetate and their equivalents [8-15]. Copper-catalyzed domino reactions have also been used in the synthesis of nitrogen-containing compounds [16-20]. Ma et al reported a convenient method for the synthesis of 2-(trifluoromethyl)indoles by introducing the trifluoroacetyl group to activate the CuI/L-proline-catalyzed system [21]. Zhao [22] and Kobayashi [23] reported the synthesis of 2-amino-1H-indole derivatives using the same kind of copper-catalyzed system. Meanwhile, the Ullmann condensation is a powerful method for C–N coupling [24-26], especially the N-arylation of nitrogen-containing heterocycles such as indoles [27,28]. Indolo[1,2-a]quinazoline is a kind of tetracyclic compounds containing the indole motif that has been constructed by intramolecular [3 + 2] cycloadditions of azido-ketenimines and azido-carbodiimides (Scheme 1) [29]. The available starting materials for the synthesis of these compounds, however, are limited. Very recently, Perumal [30] reported an efficient method for the synthesis of indolo[1,2-a]quinazoline through a Cu(I)-catalyzed intramolecular domino cyclization. Based on the previous work for the copper-catalyzed synthesis of 2-amino-1H-indole derivatives and copper-catalyzed N-arylation, we herein report a simple and efficient one-pot method to synthesize indolo[1,2-a]quinazolines by a sequential Ullmann-type C–C and C–N coupling. Compared to the previous methods [29,30], the advantages of our method are as following: (1) All the starting materials are commercially available or easily prepared. (2) Functionalized indolo[1,2-a]quinazoline derivatives can be synthesized, especially 7-cyano- or 7-sulfonyl-substituted indolo[1,2-a]quinazoline derivatives. (3) This protocol is performed as a two-step reaction in one pot.
Results and Discussion
Substituted N-(2-iodophenyl)acetamides 1 were synthesized from substituted 2-iodoaniline by acetylation [31,32]. Substituted o-iodobenzaldehydes 3 were prepared from 2-iodobenzoic acid derivatives by reduction and PCC oxidation [33].
Initially, N-(2-iodophenyl)acetamide (1a), malononitrile (2a) and 2-iodobenzaldehyde (3a) were chosen as model substrates to optimize reaction conditions including the catalysts, bases and solvents under argon atmosphere. Based on the previous work [22], four copper catalysts were screened at 80 °C using L-proline as ligand, and K2CO3 as base in a mixed solvent of DMSO and H2O (volume ratio 1:1) (Table 1, entries 1–4). To our delight, the desired product 4a was obtained in 36% yield using CuI as catalyst and 50% yield with Cu2O (Table 1, entries 1 and 4). Considering that the formation of imine occurs in the second step, the presence of water in this system may hinder the reaction. To account for this, DMSO was chosen as solvent, and a higher yield (72%) was obtained using CuI as the catalyst (Table 1, entry 6). The reactivity decreased slightly when K2CO3 was replaced with Cs2CO3 as the base (Table 1, entry 7). However, when a weaker base (K3PO4) or an organic base (DBU) was used, the conversions of starting materials were lower (Table 1, entries 8 and 9). Some other solvents were investigated, iPrOH resulted in only trace of product, while no product was detected with 1,4-dioxane and DMF led to low yield (18%) (Table 1, entries 10–12). Among the ligands screened, L-proline was more beneficial to the catalysis than L-hydroxyproline and picolinic acid (Table 1, entries 6, 13 and 14). When the reaction temperature was changed to 70 °C only traces of product were detected (Table 1, entry 15). Eventually, CuI, the inexpensive ligand L-proline and two equivalents of K2CO3 as the base in DMSO were identified as the most efficient system (Table 1, entry 6).
Table 1: Optimization of the reaction conditions.a
Entry | Catalyst | Ligandb | Base | Solvent | Yield (%)c |
---|---|---|---|---|---|
1 | CuI | A | K2CO3 | DMSO/H2Od | 36 |
2 | CuBr | A | K2CO3 | DMSO/H2O | 21 |
3 | Cu(OAc)2 | A | K2CO3 | DMSO/H2O | 16 |
4 | Cu2O | A | K2CO3 | DMSO/H2O | 50 |
5 | Cu2O | A | K2CO3 | DMSO | 45 |
6 | CuI | A | K2CO3 | DMSO | 72 |
7 | CuI | A | Cs2CO3 | DMSO | 60 |
8 | CuI | A | K3PO4 | DMSO | N.D. |
9 | CuI | A | DBU | DMSO | N.D. |
10 | CuI | A | K2CO3 | DMF | 18 |
11 | CuI | A | K2CO3 | iPrOH | trace |
12 | CuI | A | K2CO3 | 1,4-dioxane | N.R. |
13 | CuI | B | K2CO3 | DMSO | 38 |
14 | CuI | C | K2CO3 | DMSO | 31 |
15e | CuI | A | K2CO3 | DMSO | trace |
aReaction conditions: 1a (0.38 mmol ), 2a (0.46 mmol, 1.2 equiv), catalyst (0.038 mmol, 0.1 equiv), ligand (0.076 mmol, 0.2 equiv), base (0.76 mmol, 2 equiv) in 0.77 mL of solvent under argon atmosphere at 80 °C for 12 h; then 3a in 0.77 mL of solvent, another 12 h. bA = L-proline, B = L-hydroxyproline, C = picolinic acid. cIsolated yield. dDMSO/H2O 1:1. eReaction temperature: 70 °C.
With the optimized conditions in hand, the scope of the copper-catalyzed reactions of substituted N-(2-iodophenyl)acetamides with malononitriles and substituted o-iodobenzaldehydes was investigated. As summarized in Table 2, the desired products 4a–4q were obtained in moderate to good yields (34–72%) by treatment of various substituted N-(2-iodophenyl)acetamides 1a–1k with active methylene compounds 2a–2c and substituted o-iodobenzaldehydes 3a–3e. For N-(2-iodophenyl)acetamide substrates, an electron-donating p-methyl group afforded a good isolated yield of the desired product (Table 2, entry 2). However, substrate 1c with an electron-donating p-methoxy group was found to decrease the yield of the corresponding product (Table 2, entry 3). This result may be attributed to its low stability during the reaction. In comparison, electron-withdrawing p-trifluoromethyl and ester-substituted N-(2-iodophenyl)acetamides led to decreased yields of the desired compounds (Table 2, entries 4 and 5). Various halogens (F, Cl, Br) in para-position were well-tolerated on substrates 1 (Table 2, entries 6–8). Then, halogen-substituents (F, Cl) in meta position gave moderate yields (Table 2, entries 9 and 10). While a m-ester group on reactant 1k resulted in a decreased yield (Table 2, entry 11). Other types of acetonitriles substituted with electron-withdrawing groups (–CO2Me, –SO2Me, –SO2Ph, and –PO(OEt)2) were also investigated. Unfortunately, –CO2Me and –PO(OEt)2 failed to afford the desired product under the same conditions, while –SO2Me and –SO2Ph produced moderate isolated yields of the target products (Table 2, entries 12 and 13). Furthermore, the catalytic system tolerated a variety of substituted o-iodobenzaldehydes in the reaction. For o-iodobenzaldehyde substrates, electron-donating methoxy groups decreased the yield (Table 2, entry 14). However, a methyl group at the para-position of iodine in reactant 3c resulted in a good yield (Table 2, entry 15). Halogen-substituted (F, Cl) substrates 3 also provided the desired products with moderate yields (Table 2, entries 16 and 17).
Table 2: Synthesis of indolo[1,2-a]quinazolines 4.a
Entry | 1 | 2 | 3 | Product | Yield (%)b |
---|---|---|---|---|---|
1 |
1a |
2a |
3a |
4a |
72 |
2 |
1b |
2a | 3a |
4b |
71 |
3 |
1c |
2a | 3a |
4c |
45 |
4 |
1d |
2a | 3a |
4d |
49 |
5 |
1e |
2a | 3a |
4e |
51 |
6 |
1f |
2a | 3a |
4f |
63 |
7 |
1g |
2a | 3a |
4g |
49 |
8 |
1h |
2a | 3a |
4h |
56 |
9 |
1i |
2a | 3a |
4i |
51 |
10 |
1j |
2a | 3a |
4j |
54 |
11 |
1k |
2a | 3a |
4k |
37 |
12 | 1a |
2b |
3a |
4l |
52 |
13 | 1a |
2c |
3a |
4m |
53 |
14 | 1a | 2a |
3b |
4n |
32 |
15 | 1a | 2a |
3c |
4o |
64 |
16 | 1a | 2a |
3d |
4p |
54 |
17 | 1a | 2a |
3e |
4q |
55 |
aReaction conditions: 1 (100 mg, 1 equiv), 2 (1.2 equiv), catalyst (0.1 equiv), ligand (0.2 equiv), base (2 equiv) in DMSO (0.5 M) under argon atmosphere at 80 °C for 12 h; then 3 in DMSO , another 12 h. bIsolated yield.
Conclusion
In conclusion, we have developed a simple and efficient Cu-catalyzed methodology for the synthesis of indolo[1,2-a]quinazoline derivatives. This approach produced nitrogen-containing tetracyclic compounds in moderate to good yields from simple starting materials. This method will provide an opportunity for the construction of diverse and useful nitrogen-containing tetracyclic compounds that incorporate the bioactive indole motif in organic chemistry and medicinal chemistry.
Experimental
General procedure for the synthesis of indolo[1,2-a]quinazolines 4a–4q
A dry sealed tube was charged with a magnetic stirrer, substituted N-(2-iodophenyl)acetamide (100 mg for each example, 0.38 mmol), malononitrile or 2-sulfonylacetonitriles (0.46 mmol, 1.2 equiv), CuI (0.038 mmol, 0.1 equiv), L-proline (0.076 mmol, 0.2 equiv), and K2CO3 (0.76 mmol, 2 equiv) in 0.77 mL of DMSO. The tube was evacuated and backfilled with argon and the process was repeated three times. The mixture was stirred at 80 °C for 12 h under an argon atmosphere. After the starting material was consumed completely, 2-iodobenzaldehyde (0.4 mmol, 1.05 equiv) with 0.77 mL of DMSO was charged successively to the tube via syringe, and then the resulting mixture was stirred at 80 °C for another 12 h under an argon atmosphere. After the reaction was complete, the reaction mixture was cooled to room temperature and the reaction mixture was partitioned between ethyl acetate or dichloromethane and water. The organic layer was separated and the aqueous layer was extracted with ethyl acetate or dichloromethane for three times. The combined organic solution was washed with water, brine, dried over anhydrous Na2SO4, and concentrated under reduced pressure to give the crude product. Purification by chromatography on silica gel using petroleum ether/ethyl acetate or dichloromethane/ethyl acetate as eluent provided the desired product.
Supporting Information
Supporting Information File 1: General information, experimental details, characterization data and copies of 1H and 13C NMR spectra. | ||
Format: PDF | Size: 2.2 MB | Download |
References
-
Aygun, A.; Pindur, U. Curr. Med. Chem. 2003, 10, 1113–1127. doi:10.2174/0929867033457511
Return to citation in text: [1] -
Rodrigues de Sá Alves, F.; Barreiro, E. J.; Manssour Fraga, C. A. Mini-Rev. Med. Chem. 2009, 9, 782–793. doi:10.2174/138955709788452649
Return to citation in text: [1] -
Ishikura, M.; Yamada, K.; Abe, T. Nat. Prod. Rep. 2010, 27, 1630–1680. doi:10.1039/c005345g
Return to citation in text: [1] -
Welsch, M. E.; Snyder, S. A.; Stockwell, B. R. Curr. Opin. Chem. Biol. 2010, 14, 347–361. doi:10.1016/j.cbpa.2010.02.018
Return to citation in text: [1] -
Pons, V.; Beaumont, S.; Dau, M. E. T. H.; Iorga, B. I.; Dodd, R. H. ACS Med. Chem. Lett. 2011, 2, 565–570. doi:10.1021/ml200024y
Return to citation in text: [1] -
Vangrevelinghe, E.; Zimmermann, K.; Schoepfer, J.; Portmann, R.; Fabbro, D.; Furet, P. J. Med. Chem. 2003, 46, 2656–2662. doi:10.1021/jm030827e
Return to citation in text: [1] -
Xu, H.; Fan, L.-l. Eur. J. Med. Chem. 2011, 46, 364–369. doi:10.1016/j.ejmech.2010.10.022
Return to citation in text: [1] -
Okuro, K.; Furuune, M.; Miura, M.; Nomura, M. J. Org. Chem. 1993, 58, 7606–7607. doi:10.1021/jo00078a053
Return to citation in text: [1] -
Ma, D.; Cai, Q. Acc. Chem. Res. 2008, 41, 1450–1460. doi:10.1021/ar8000298
Return to citation in text: [1] -
Monnier, F.; Taillefer, M. Angew. Chem., Int. Ed. 2008, 47, 3096–3099. doi:10.1002/anie.200703209
Return to citation in text: [1] -
Wang, B.; Lu, B.; Jiang, Y.; Zhang, Y.; Ma, D. Org. Lett. 2008, 10, 2761–2763. doi:10.1021/ol800900a
Return to citation in text: [1] -
Wang, F.; Liu, H.; Fu, H.; Jiang, Y.; Zhao, Y. Org. Lett. 2009, 11, 2469–2472. doi:10.1021/ol900847t
Return to citation in text: [1] -
Xie, X.; Cai, G.; Ma, D. Org. Lett. 2005, 7, 4693–4695. doi:10.1021/ol0518838
Return to citation in text: [1] -
Xie, X.; Chen, Y.; Ma, D. J. Am. Chem. Soc. 2006, 128, 16050–16051. doi:10.1021/ja066991j
Return to citation in text: [1] -
Yip, S. F.; Cheung, H. Y.; Zhou, Z.; Kwong, F. Y. Org. Lett. 2007, 9, 3469–3472. doi:10.1021/ol701473p
Return to citation in text: [1] -
Adepu, R.; Sunke, R.; Meda, C. L. T.; Rambabu, D.; Krishna, G. R.; Reddy, C. M.; Deora, G. S.; Parsa, K. V. L.; Pal, M. Chem. Commun. 2013, 49, 190–192. doi:10.1039/c2cc37070k
Return to citation in text: [1] -
Liu, T.; Wang, R.; Yang, H.; Fu, H. Chem. – Eur. J. 2011, 17, 6765–6771. doi:10.1002/chem.201100690
Return to citation in text: [1] -
Lu, J.; Gong, X.; Yang, H.; Fu, H. Chem. Commun. 2010, 46, 4172–4174. doi:10.1039/c0cc00185f
Return to citation in text: [1] -
Sunke, R.; Adepu, R.; Kapavarapu, R.; Chintala, S.; Meda, C. L. T.; Parsa, K. V. L.; Pal, M. Chem. Commun. 2013, 49, 3570–3572. doi:10.1039/c3cc41337c
Return to citation in text: [1] -
Jiang, M.; Li, J.; Wang, F.; Zhao, Y.; Zhao, F.; Dong, X.; Zhao, W. Org. Lett. 2012, 14, 1420–1423. doi:10.1021/ol3001624
Return to citation in text: [1] -
Chen, Y.; Wang, Y.; Sun, Z.; Ma, D. Org. Lett. 2008, 10, 625–628. doi:10.1021/ol7029382
Return to citation in text: [1] -
Yang, X.; Fu, H.; Qiao, R.; Jiang, Y.; Zhao, Y. Adv. Synth. Catal. 2010, 352, 1033–1038. doi:10.1002/adsc.200900887
Return to citation in text: [1] [2] -
Kobayashi, K.; Komatsu, T.; Yokoi, Y.; Konishi, H. Synthesis 2011, 764–768. doi:10.1055/s-0030-1258422
Return to citation in text: [1] -
Evano, G.; Blanchard, N.; Toumi, M. Chem. Rev. 2008, 108, 3054–3131. doi:10.1021/cr8002505
Return to citation in text: [1] -
Altman, R. A.; Koval, E. D.; Buchwald, S. L. J. Org. Chem. 2007, 72, 6190–6199. doi:10.1021/jo070807a
Return to citation in text: [1] -
Davis, O. A.; Hughes, M.; Bull, J. A. J. Org. Chem. 2013, 78, 3470–3475. doi:10.1021/jo400120r
Return to citation in text: [1] -
Antilla, J. C.; Klapars, A.; Buchwald, S. L. J. Am. Chem. Soc. 2002, 124, 11684–11688. doi:10.1021/ja027433h
Return to citation in text: [1] -
Ziegler, D. T.; Choi, J.; Muñoz-Molina, J. M.; Bissember, A. C.; Peters, J. C.; Fu, G. C. J. Am. Chem. Soc. 2013, 135, 13107–13112. doi:10.1021/ja4060806
Return to citation in text: [1] -
Alajarin, M.; Bonillo, B.; Ortin, M.-M.; Orenes, R.-A.; Vidal, A. Org. Biomol. Chem. 2011, 9, 6741–6749. doi:10.1039/c1ob05745f
Return to citation in text: [1] [2] -
Kiruthika, S. E.; Perumal, P. T. Org. Lett. 2014, 16, 484–487. doi:10.1021/ol403365t
Return to citation in text: [1] [2] -
Kotha, S.; Shah, V. R. Eur. J. Org. Chem. 2008, 1054–1064. doi:10.1002/ejoc.200700921
Return to citation in text: [1] -
Shimada, T.; Nakamura, I.; Yamamoto, Y. J. Am. Chem. Soc. 2004, 126, 10546–10547. doi:10.1021/ja047542r
Return to citation in text: [1] -
Zhou, P.-X.; Luo, J.-Y.; Zhao, L.-B.; Ye, Y.-Y.; Liang, Y.-M. Chem. Commun. 2013, 49, 3254–3256. doi:10.1039/c3cc40577j
Return to citation in text: [1]
1. | Aygun, A.; Pindur, U. Curr. Med. Chem. 2003, 10, 1113–1127. doi:10.2174/0929867033457511 |
2. | Rodrigues de Sá Alves, F.; Barreiro, E. J.; Manssour Fraga, C. A. Mini-Rev. Med. Chem. 2009, 9, 782–793. doi:10.2174/138955709788452649 |
3. | Ishikura, M.; Yamada, K.; Abe, T. Nat. Prod. Rep. 2010, 27, 1630–1680. doi:10.1039/c005345g |
4. | Welsch, M. E.; Snyder, S. A.; Stockwell, B. R. Curr. Opin. Chem. Biol. 2010, 14, 347–361. doi:10.1016/j.cbpa.2010.02.018 |
5. | Pons, V.; Beaumont, S.; Dau, M. E. T. H.; Iorga, B. I.; Dodd, R. H. ACS Med. Chem. Lett. 2011, 2, 565–570. doi:10.1021/ml200024y |
16. | Adepu, R.; Sunke, R.; Meda, C. L. T.; Rambabu, D.; Krishna, G. R.; Reddy, C. M.; Deora, G. S.; Parsa, K. V. L.; Pal, M. Chem. Commun. 2013, 49, 190–192. doi:10.1039/c2cc37070k |
17. | Liu, T.; Wang, R.; Yang, H.; Fu, H. Chem. – Eur. J. 2011, 17, 6765–6771. doi:10.1002/chem.201100690 |
18. | Lu, J.; Gong, X.; Yang, H.; Fu, H. Chem. Commun. 2010, 46, 4172–4174. doi:10.1039/c0cc00185f |
19. | Sunke, R.; Adepu, R.; Kapavarapu, R.; Chintala, S.; Meda, C. L. T.; Parsa, K. V. L.; Pal, M. Chem. Commun. 2013, 49, 3570–3572. doi:10.1039/c3cc41337c |
20. | Jiang, M.; Li, J.; Wang, F.; Zhao, Y.; Zhao, F.; Dong, X.; Zhao, W. Org. Lett. 2012, 14, 1420–1423. doi:10.1021/ol3001624 |
33. | Zhou, P.-X.; Luo, J.-Y.; Zhao, L.-B.; Ye, Y.-Y.; Liang, Y.-M. Chem. Commun. 2013, 49, 3254–3256. doi:10.1039/c3cc40577j |
8. | Okuro, K.; Furuune, M.; Miura, M.; Nomura, M. J. Org. Chem. 1993, 58, 7606–7607. doi:10.1021/jo00078a053 |
9. | Ma, D.; Cai, Q. Acc. Chem. Res. 2008, 41, 1450–1460. doi:10.1021/ar8000298 |
10. | Monnier, F.; Taillefer, M. Angew. Chem., Int. Ed. 2008, 47, 3096–3099. doi:10.1002/anie.200703209 |
11. | Wang, B.; Lu, B.; Jiang, Y.; Zhang, Y.; Ma, D. Org. Lett. 2008, 10, 2761–2763. doi:10.1021/ol800900a |
12. | Wang, F.; Liu, H.; Fu, H.; Jiang, Y.; Zhao, Y. Org. Lett. 2009, 11, 2469–2472. doi:10.1021/ol900847t |
13. | Xie, X.; Cai, G.; Ma, D. Org. Lett. 2005, 7, 4693–4695. doi:10.1021/ol0518838 |
14. | Xie, X.; Chen, Y.; Ma, D. J. Am. Chem. Soc. 2006, 128, 16050–16051. doi:10.1021/ja066991j |
15. | Yip, S. F.; Cheung, H. Y.; Zhou, Z.; Kwong, F. Y. Org. Lett. 2007, 9, 3469–3472. doi:10.1021/ol701473p |
22. | Yang, X.; Fu, H.; Qiao, R.; Jiang, Y.; Zhao, Y. Adv. Synth. Catal. 2010, 352, 1033–1038. doi:10.1002/adsc.200900887 |
7. | Xu, H.; Fan, L.-l. Eur. J. Med. Chem. 2011, 46, 364–369. doi:10.1016/j.ejmech.2010.10.022 |
29. | Alajarin, M.; Bonillo, B.; Ortin, M.-M.; Orenes, R.-A.; Vidal, A. Org. Biomol. Chem. 2011, 9, 6741–6749. doi:10.1039/c1ob05745f |
30. | Kiruthika, S. E.; Perumal, P. T. Org. Lett. 2014, 16, 484–487. doi:10.1021/ol403365t |
6. | Vangrevelinghe, E.; Zimmermann, K.; Schoepfer, J.; Portmann, R.; Fabbro, D.; Furet, P. J. Med. Chem. 2003, 46, 2656–2662. doi:10.1021/jm030827e |
31. | Kotha, S.; Shah, V. R. Eur. J. Org. Chem. 2008, 1054–1064. doi:10.1002/ejoc.200700921 |
32. | Shimada, T.; Nakamura, I.; Yamamoto, Y. J. Am. Chem. Soc. 2004, 126, 10546–10547. doi:10.1021/ja047542r |
24. | Evano, G.; Blanchard, N.; Toumi, M. Chem. Rev. 2008, 108, 3054–3131. doi:10.1021/cr8002505 |
25. | Altman, R. A.; Koval, E. D.; Buchwald, S. L. J. Org. Chem. 2007, 72, 6190–6199. doi:10.1021/jo070807a |
26. | Davis, O. A.; Hughes, M.; Bull, J. A. J. Org. Chem. 2013, 78, 3470–3475. doi:10.1021/jo400120r |
29. | Alajarin, M.; Bonillo, B.; Ortin, M.-M.; Orenes, R.-A.; Vidal, A. Org. Biomol. Chem. 2011, 9, 6741–6749. doi:10.1039/c1ob05745f |
23. | Kobayashi, K.; Komatsu, T.; Yokoi, Y.; Konishi, H. Synthesis 2011, 764–768. doi:10.1055/s-0030-1258422 |
30. | Kiruthika, S. E.; Perumal, P. T. Org. Lett. 2014, 16, 484–487. doi:10.1021/ol403365t |
22. | Yang, X.; Fu, H.; Qiao, R.; Jiang, Y.; Zhao, Y. Adv. Synth. Catal. 2010, 352, 1033–1038. doi:10.1002/adsc.200900887 |
21. | Chen, Y.; Wang, Y.; Sun, Z.; Ma, D. Org. Lett. 2008, 10, 625–628. doi:10.1021/ol7029382 |
27. | Antilla, J. C.; Klapars, A.; Buchwald, S. L. J. Am. Chem. Soc. 2002, 124, 11684–11688. doi:10.1021/ja027433h |
28. | Ziegler, D. T.; Choi, J.; Muñoz-Molina, J. M.; Bissember, A. C.; Peters, J. C.; Fu, G. C. J. Am. Chem. Soc. 2013, 135, 13107–13112. doi:10.1021/ja4060806 |
© 2014 Li et al; licensee Beilstein-Institut.
This is an Open Access article under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
The license is subject to the Beilstein Journal of Organic Chemistry terms and conditions: (http://www.beilstein-journals.org/bjoc)