Superoxide chemistry revisited: synthesis of tetrachloro-substituted methylenenortricyclenes

Basavaraj M. Budanur and Faiz Ahmed Khan
Beilstein J. Org. Chem. 2014, 10, 2531–2538. https://doi.org/10.3762/bjoc.10.264

Supporting Information

Experimental procedures and analytical data, including copies of 1H and 13C NMR spectra for all new compounds. Crystallographic data for structures 5a and 8a have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication nos. CCDC 1021351 and 1021303. Copies of the data can be obtained, free of charge, on application to CCDC, 12 Union Road, Cambridge, CB2 1EZ, UK (fax: +44-(0)1223-336033 or e-mail: deposit@ccdc.cam.ac.ukor via: http://www.ccdc.cam.ac.uk).

Supporting Information File 1: Experimental part and NMR spectra.
Format: PDF Size: 2.7 MB Download

Cite the Following Article

Superoxide chemistry revisited: synthesis of tetrachloro-substituted methylenenortricyclenes
Basavaraj M. Budanur and Faiz Ahmed Khan
Beilstein J. Org. Chem. 2014, 10, 2531–2538. https://doi.org/10.3762/bjoc.10.264

How to Cite

Budanur, B. M.; Khan, F. A. Beilstein J. Org. Chem. 2014, 10, 2531–2538. doi:10.3762/bjoc.10.264

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Attar, F.; Yin, H.; Schumann, S. L.; Langley, J.; Cox, N.; Zeng, Z.; Catchpole, K.; Karuturi, S.; Yin, Z. Advanced electron paramagnetic resonance in chemical energy conversion: current status and future potential. Energy & Environmental Science 2024, 17, 3307–3328. doi:10.1039/d4ee00445k
  • Humayun, S.; Hayyan, M.; Alias, Y.; Hayyan, A. Oxidative degradation of acetaminophen using superoxide ion generated in ionic liquid/aprotic solvent binary system. Separation and Purification Technology 2021, 270, 118730. doi:10.1016/j.seppur.2021.118730
  • Vasudevan, N.; Routholla, G.; Illa, G. T.; Reddy, D. S. Synthesis of α-ketoamides using potassium superoxide (KO2) as an oxidizing agent. Tetrahedron 2020, 76, 131262. doi:10.1016/j.tet.2020.131262
  • Nolte, T. M.; Peijnenburg, W. J. Use of quantum-chemical descriptors to analyse reaction rate constants between organic chemicals and superoxide/hydroperoxyl (O2•-/HO2•). Free radical research 2018, 52, 1118–1131. doi:10.1080/10715762.2018.1529867
  • Nemade, K.; Waghuley, S. Synthesis of stable cesium superoxide nanoparticles for gas sensing application by solution-processed spray pyrolysis method. Applied Nanoscience 2017, 7, 753–758. doi:10.1007/s13204-017-0619-2
  • Hayyan, M.; Hashim, M. A.; AlNashef, I. M. Superoxide Ion: Generation and Chemical Implications. Chemical reviews 2016, 116, 3029–3085. doi:10.1021/acs.chemrev.5b00407
  • Khan, F. A.; Budanur, B. M. Superoxide mediated isomerization of 4-aryl-but-1-ynes to 1-aryl-1,3-butadienes. Tetrahedron 2015, 71, 7600–7607. doi:10.1016/j.tet.2015.07.075
Other Beilstein-Institut Open Science Activities