Cite the Following Article
An integrated photocatalytic/enzymatic system for the reduction of CO2 to methanol in bioglycerol–water
Michele Aresta, Angela Dibenedetto, Tomasz Baran, Antonella Angelini, Przemysław Łabuz and Wojciech Macyk
Beilstein J. Org. Chem. 2014, 10, 2556–2565.
https://doi.org/10.3762/bjoc.10.267
How to Cite
Aresta, M.; Dibenedetto, A.; Baran, T.; Angelini, A.; Łabuz, P.; Macyk, W. Beilstein J. Org. Chem. 2014, 10, 2556–2565. doi:10.3762/bjoc.10.267
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Baran, T.; Caringella, D.; Dibenedetto, A.; Aresta, M. Pitfalls in Photochemical and Photoelectrochemical Reduction of CO2 to Energy Products. Molecules (Basel, Switzerland) 2024, 29, 4758. doi:10.3390/molecules29194758
- Di Spiridione, C.; Aresta, M.; Dibenedetto, A. Influence of the Immobilization Technique on the Productivity of Enzymes in the Cascade Reduction of CO2 to CH3OH. Advanced Energy and Sustainability Research 2024, 5. doi:10.1002/aesr.202400081
- Aresta, M. Large-Scale Recycling of Carbon: Carbon Dioxide as Source of Carbon. Green Chemistry and Sustainable Technology; Springer Nature Singapore, 2024; pp 287–307. doi:10.1007/978-981-99-8822-8_12
- Nadda, A. K.; Dutta, D.; Kumar, A.; Sharma, K.; Panda, P. K.; Kundu, D.; Yadav, D.; Kumar, S.; Lam, S. S. Chemistry of CO2-philic materials in enzyme-based hybrid interfacial systems: Implications, strategies and applications. Fuel Processing Technology 2023, 250, 107905. doi:10.1016/j.fuproc.2023.107905
- Gayathri, R.; Ranjitha, J.; Vijayalakshmi, S. Carbon Dioxide Capture and Bioenergy Production by Utilizing the Biological System. Sustainable Materials and Technology; Springer Nature Singapore, 2023; pp 159–194. doi:10.1007/978-981-99-2890-3_7
- Nishida, S.; Sumi, H.; Noji, H.; Itoh, A.; Kataoka, K.; Yamashita, S.; Kano, K.; Sowa, K.; Kitazumi, Y.; Shirai, O. Influence of distal glycan mimics on direct electron transfer performance for bilirubin oxidase bioelectrocatalysts. Bioelectrochemistry (Amsterdam, Netherlands) 2023, 152, 108413. doi:10.1016/j.bioelechem.2023.108413
- Li, S.; Shi, J.; Liu, S.; Li, W.; Chen, Y.; Shan, H.; Cheng, Y.; Wu, H.; Jiang, Z. Molecule-electron-proton transfer in enzyme-photo-coupled catalytic system. Chinese Journal of Catalysis 2023, 44, 96–110. doi:10.1016/s1872-2067(22)64154-8
- Sharma, V. K.; Hutchison, J. M.; Allgeier, A. M. Redox Biocatalysis: Quantitative Comparisons of Nicotinamide Cofactor Regeneration Methods. ChemSusChem 2022, 15, e202200888. doi:10.1002/cssc.202200888
- Aresta, M. The Contribution of CIRCC Partners to the Birth and Growth of CO2 Chemistry. European Journal of Inorganic Chemistry 2022, 2022. doi:10.1002/ejic.202200321
- Paul, L.; Gu, M.; Moise, S.; Harrison, D. P.; Norris, M. R. Six-Electron CO2 Reduction Involving Participation by Benzimidazole-Derived Bidentate Ligands in Ruthenium Complexes. ACS Applied Energy Materials 2022, 5, 9280–9285. doi:10.1021/acsaem.2c01408
- Di Spiridione, C.; Aresta, M.; Dibenedetto, A. Improving the Enzymatic Cascade of Reactions for the Reduction of CO2 to CH3OH in Water: From Enzymes Immobilization Strategies to Cofactor Regeneration and Cofactor Suppression. Molecules (Basel, Switzerland) 2022, 27, 4913. doi:10.3390/molecules27154913
- Liao, Q.; Liu, W.; Meng, Z. Strategies for overcoming the limitations of enzymatic carbon dioxide reduction. Biotechnology advances 2022, 60, 108024. doi:10.1016/j.biotechadv.2022.108024
- Antonopoulou, I.; Rova, U.; Christakopoulos, P. CO2 to Methanol: A Highly Efficient Enzyme Cascade. Methods in molecular biology (Clifton, N.J.) 2022, 2487, 317–344. doi:10.1007/978-1-0716-2269-8_19
- Suzuki, Y.; Itoh, A.; Kataoka, K.; Yamashita, S.; Kano, K.; Sowa, K.; Kitazumi, Y.; Shirai, O. Effects of N-linked glycans of bilirubin oxidase on direct electron transfer-type bioelectrocatalysis. Bioelectrochemistry (Amsterdam, Netherlands) 2022, 146, 108141. doi:10.1016/j.bioelechem.2022.108141
- Ahmad Rizal Lim, F. N.; Marpani, F.; Anak Dilol, V. E.; Mohamad Pauzi, S.; Othman, N. H.; Alias, N. H.; Nik Him, N. R.; Luo, J.; Abd Rahman, N. A Review on the Design and Performance of Enzyme-Aided Catalysis of Carbon Dioxide in Membrane, Electrochemical Cell and Photocatalytic Reactors. Membranes 2021, 12, 28. doi:10.3390/membranes12010028
- Baran, T.; Visibile, A.; Busch, M.; He, X.; Wojtyła, S.; Rondinini, S.; Minguzzi, A.; Vertova, A. Copper Oxide-Based Photocatalysts and Photocathodes: Fundamentals and Recent Advances. Molecules (Basel, Switzerland) 2021, 26, 7271. doi:10.3390/molecules26237271
- Singh, P.; Srivastava, R. Utilization of bio-inspired catalyst for CO2 reduction into green fuels: Recent advancement and future perspectives. Journal of CO2 Utilization 2021, 53, 101748. doi:10.1016/j.jcou.2021.101748
- Grosu, E.-F.; Girardon, J.-S.; Carja, G.; Froidevaux, R. NADH Regeneration Promoted by Solar Light Using Gold Nanoparticles/Layered Double Hydroxides as Novel Photocatalytic Nanoplatforms. ChemistrySelect 2021, 6, 10514–10523. doi:10.1002/slct.202102221
- Zhang, Z.; Vasiliu, T.; Li, F.; Laaksonen, A.; Mocci, F.; Ji, X. Electrochemically driven efficient enzymatic conversion of CO2 to formic acid with artificial cofactors. Journal of CO2 Utilization 2021, 52, 101679. doi:10.1016/j.jcou.2021.101679
- Hoang, V. C.; Bui, T.-S.; Nguyen, H.; Hoang, T. T.; Rahman, G.; Van Le, Q.; Le Tri Nguyen, D. Solar-driven conversion of carbon dioxide over nanostructured metal-based catalysts in alternative approaches: Fundamental mechanisms and recent progress. Environmental research 2021, 202, 111781. doi:10.1016/j.envres.2021.111781
Patents
- DODDS DAVID R; ARMIGER WILLIAM B; KOFFAS MATTHEOS. Methods and systems for 1-butanol production. US 11512328 B2, Nov 29, 2022.