Recent advances in the electrochemical construction of heterocycles

Robert Francke
Beilstein J. Org. Chem. 2014, 10, 2858–2873. https://doi.org/10.3762/bjoc.10.303

Cite the Following Article

Recent advances in the electrochemical construction of heterocycles
Robert Francke
Beilstein J. Org. Chem. 2014, 10, 2858–2873. https://doi.org/10.3762/bjoc.10.303

How to Cite

Francke, R. Beilstein J. Org. Chem. 2014, 10, 2858–2873. doi:10.3762/bjoc.10.303

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Lin, L.; Feng, P. Construction and Derivatization of Indole Derivatives Under Electrochemical Conditions. Topics in Heterocyclic Chemistry; Springer Berlin Heidelberg, 2024. doi:10.1007/7081_2024_79
  • Wu, Y.-M.; Ma, X.-L.; Li, F.-Y.; Huang, C.-C.; Gao, L.; Zhang, Y.; Pan, Y.-M.; He, M.-X.; Mo, Z.-Y. Dearomative Cyclization/Spirocyclization via Electrochemical Reductive Hydroarylation of Nonactivated Arenes. Organic letters 2024, 26, 8993–8998. doi:10.1021/acs.orglett.4c02862
  • Sandvoß, A.; Winter, J.; Prenzel, T.; Waldvogel, S. R. Electrochemical Heterocyclic Ring-Formation Reactions by Making C–N and N–N Bonds. Topics in Heterocyclic Chemistry; Springer Berlin Heidelberg, 2024. doi:10.1007/7081_2024_80
  • Okumura, Y.; Sato, E.; Mitsudo, K.; Suga, S. Electrochemical synthesis of heterocyclic compounds via carbon–heteroatom bond formation: direct and indirect electrolysis. Chemistry Letters 2024, 53. doi:10.1093/chemle/upae146
  • Mahadevan, A.; Kumar, P.; Butt, S.; Velloth, A.; Venkataramani, S. Unravelling the factors affecting the stability and reactivity of dehydro-pyrazole, isothiazole and isoxazole radical isomers: a computational study. New Journal of Chemistry 2024, 48, 10239–10252. doi:10.1039/d4nj00455h
  • Mousa, M. O.; Adly, M. E.; Mahmoud, A. M.; El-Nassan, H. B. Synthesis of Tetrahydro-β-carboline Derivatives under Electrochemical Conditions in Deep Eutectic Solvents. ACS omega 2024, 9, 14198–14209. doi:10.1021/acsomega.3c09790
  • Grishin, S. S.; Mulina, O. M.; Vil', V. A.; Terent'ev, A. O. Electrochemical synthesis of CN-substituted imidazo[1,5-a]pyridines via a cascade process using NH4SCN as both an electrolyte and a non-trivial cyanating agent. Organic Chemistry Frontiers 2024, 11, 327–335. doi:10.1039/d3qo01690k
  • Huang, B. Photo- and electro-chemical synthesis of substituted pyrroles. Green Chemistry 2024. doi:10.1039/d4gc04495a
  • Nguyen, K. T.; Huynh, T. N. T.; Ratanathawornkiti, K.; Juthathan, M.; Thamyongkit, P.; Sukwattanasinitt, M.; Wacharasindhu, S. NaI-Mediated Electrochemical Cyclization-Desulfurization for the Synthesis of N-Substituted 2-Aminobenzimidazoles. The Journal of organic chemistry 2023, 89, 1591–1608. doi:10.1021/acs.joc.3c02212
  • Zhang, M.; Luo, Z.; Tang, X.; Yu, L.; Pei, J.; Wang, J.; Lu, C.; Huang, B. Electrochemical selenocyclization of 2-ethynylanilines with diselenides: facile and efficient access to 3-selenylindoles. Organic & biomolecular chemistry 2023, 21, 8918–8923. doi:10.1039/d3ob01502e
  • Kumar, R.; Banerjee, N.; Kumar, P.; Banerjee, P. Electrochemical Synthesis and Reactivity of Three-Membered Strained Carbo- and Heterocycles. Chemistry (Weinheim an der Bergstrasse, Germany) 2023, 29, e202301594. doi:10.1002/chem.202301594
  • Wang, C.; He, J.; Mei, H.; Han, J. Electrochemical reaction of indole-tethered alkynes enabling stereoselective construction of tetrahydro-γ-carbolines. Tetrahedron Letters 2023, 127, 154664. doi:10.1016/j.tetlet.2023.154664
  • Dong, Z.-B.; Gong, Z.; Dou, Q.; Cheng, B.; Wang, T. A decade update on the application of β-oxodithioesters in heterocyclic synthesis. Organic & biomolecular chemistry 2023, 21, 6806–6829. doi:10.1039/d3ob00601h
  • Huang, B.; Chen, G.; Zhang, H.; Tang, X.; Yuan, J.; Lu, C.; Wang, J. Divergent electrosynthesis of 3-iodoindoles and indoles from 2-ethynylanilines under ambient and aqueous conditions. Organic Chemistry Frontiers 2023, 10, 3515–3521. doi:10.1039/d3qo00512g
  • Kirillov, A. S.; Semenov, E. A.; Bityukov, O. V.; Kuznetsova, M. A.; Demidova, V. N.; Rogozhin, A. N.; Glinushkin, A. P.; Vil', V. A.; Terent'ev, A. O. An environmentally benign way to synthesize 2-thiocyano-1,3-dicarbonyl compounds with high antifungal activity: a key role of solvent. Organic & biomolecular chemistry 2023, 21, 3615–3622. doi:10.1039/d3ob00474k
  • Das, B.; Chakraborty, N.; Rajbongshi, K. K.; Patel, B. K. Synthetic utility of styrenes in the construction of diverse heterocycles via annulation/cycloaddition. Tetrahedron 2023, 134, 133270. doi:10.1016/j.tet.2023.133270
  • Winter, J.; Prenzel, T.; Wirtanen, T.; Schollmeyer, D.; Waldvogel, S. R. Direct Electrochemical Synthesis of 2,3-Disubstituted Quinoline N-oxides by Cathodic Reduction of Nitro Arenes. Chemistry (Weinheim an der Bergstrasse, Germany) 2023, 29, e202203319. doi:10.1002/chem.202203319
  • Wang, C.; He, J.; Mei, H.; Han, J. Electrochemical Reaction of Indole-Tethered Alkynes Enabling Stereoselective Construction of Tetrahydro-Γ-Carbolines. Elsevier BV 2023. doi:10.2139/ssrn.4477314
  • Karipal Padinjare Veedu, D.; Connal, L. A.; Malins, L. R. Tunable Electrochemical Peptide Modifications: Unlocking New Levels of Orthogonality for Side-Chain Functionalization. Angewandte Chemie (International ed. in English) 2022, 62, e202215470. doi:10.1002/anie.202215470
  • Karipal Padinjare Veedu, D.; Connal, L. A.; Malins, L. R. Tunable Electrochemical Peptide Modifications: Unlocking New Levels of Orthogonality for Side‐Chain Functionalization. Angewandte Chemie 2022, 135. doi:10.1002/ange.202215470
Other Beilstein-Institut Open Science Activities