The Shono-type electroorganic oxidation of unfunctionalised amides. Carbon–carbon bond formation via electrogenerated N-acyliminium ions

Alan M. Jones and Craig E. Banks
Beilstein J. Org. Chem. 2014, 10, 3056–3072. https://doi.org/10.3762/bjoc.10.323

Cite the Following Article

The Shono-type electroorganic oxidation of unfunctionalised amides. Carbon–carbon bond formation via electrogenerated N-acyliminium ions
Alan M. Jones and Craig E. Banks
Beilstein J. Org. Chem. 2014, 10, 3056–3072. https://doi.org/10.3762/bjoc.10.323

How to Cite

Jones, A. M.; Banks, C. E. Beilstein J. Org. Chem. 2014, 10, 3056–3072. doi:10.3762/bjoc.10.323

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Naulin, E.; Brion, A.; Biatuma, D.; Roulland, E.; Genta-Jouve, G.; Neuville, L.; Masson, G. Stereoselective synthesis of fissoldhimine alkaloid analogues via sequential electrooxidation and heterodimerization of ureas. Chemical communications (Cambridge, England) 2024, 60, 11560–11563. doi:10.1039/d4cc02616k
  • Hawkins, B. C.; Chalker, J. M.; Coote, M. L.; Bissember, A. C. Electrochemically Generated Carbocations in Organic Synthesis. Angewandte Chemie 2024, 136. doi:10.1002/ange.202407207
  • Schafer, L. L.; Zheng, C. H. M. Recent Advances in Saturated N-Heterocycle C–H Bond Functionalization for Alkylated N-Heterocycle Synthesis. Synthesis 2024. doi:10.1055/s-0043-1775377
  • Hawkins, B. C.; Chalker, J. M.; Coote, M. L.; Bissember, A. C. Electrochemically Generated Carbocations in Organic Synthesis. Angewandte Chemie (International ed. in English) 2024, 63, e202407207. doi:10.1002/anie.202407207
  • Asra, R.; Povinelli, A. P. R.; Zazeri, G.; Jones, A. M. Computational Predictive and Electrochemical Detection of Metabolites (CP-EDM) of Piperine. Molecules (Basel, Switzerland) 2024, 29, 2406. doi:10.3390/molecules29102406
  • Garg, A.; Rendina, D.; Bendale, H.; Akiyama, T.; Ojima, I. Recent advances in catalytic asymmetric synthesis. Frontiers in chemistry 2024, 12, 1398397. doi:10.3389/fchem.2024.1398397
  • Sharma, S. Electro-organic Reactions: Direct and Indirect Electrolysis. Oriental Journal Of Chemistry 2024, 40, 321–332. doi:10.13005/ojc/400202
  • Zhou, Y.; Jones, A. M. A General Method to Access Underexplored Ylideneamino Sulfates as Interrupted Beckmann-Type Rearrangement Intermediates. Molecules (Basel, Switzerland) 2024, 29, 1667. doi:10.3390/molecules29071667
  • Griffin, J. D.; Harper, K. C.; Velasquez Morales, S.; Morrill, W. H.; Thornton, W. I.; Sutherland, D.; Greiner, B. A. A Scalable Solution to Constant-Potential Flow Electrochemistry. Organic Process Research & Development 2024, 28, 1877–1885. doi:10.1021/acs.oprd.3c00432
  • Lehnherr, D.; Chen, L. Overview of Recent Scale-Ups in Organic Electrosynthesis (2000–2023). Organic Process Research & Development 2024, 28, 338–366. doi:10.1021/acs.oprd.3c00340
  • Grishin, S. S.; Mulina, O. M.; Vil', V. A.; Terent'ev, A. O. Electrochemical synthesis of CN-substituted imidazo[1,5-a]pyridines via a cascade process using NH4SCN as both an electrolyte and a non-trivial cyanating agent. Organic Chemistry Frontiers 2024, 11, 327–335. doi:10.1039/d3qo01690k
  • Kundu, G.; Lambert, T. H. Electrochemical Vicinal C-H Difunctionalization of Saturated Azaheterocycles. Journal of the American Chemical Society 2024, 146, 1794–1798. doi:10.1021/jacs.3c12336
  • Li, Z.-J.; Wang, Z.-H.; Guo, J.-F.; Fang, P.; Ma, C.; Liu, R.-H.; Mei, T.-S. Electrochemistry-Enabled 2,2,6,6-Tetramethylpiperidoxyl (TEMPO)-Mediated Oxidative Dehydrogenation Povarov/Tandem Reactions of Glycine Derivatives. Chinese Journal of Organic Chemistry 2024, 44, 940. doi:10.6023/cjoc202401002
  • Jia, F.; Li, Z. Oxidation Adjacent to Nitrogen. Reference Module in Chemistry, Molecular Sciences and Chemical Engineering; Elsevier, 2024. doi:10.1016/b978-0-323-96025-0.00088-0
  • AKAHANE, S.; MORIZUMI, H.; KITANO, Y.; OKADA, Y. Stereoselective Shono Oxidations: Use of Alkylidene Protective Groups. Electrochemistry 2023, 91, 112010. doi:10.5796/electrochemistry.23-67081
  • Miller, J. L.; Damodaran, K.; Floreancig, P. E. Nitrogen Heterocycle Synthesis through Hydride Abstraction of Acyclic Carbamates and Related Species: Scope, Mechanism, Stereoselectivity, and Product Conformation Studies. Chemistry (Weinheim an der Bergstrasse, Germany) 2023, 29, e202302977. doi:10.1002/chem.202302977
  • Vercammen, J.; Krasniqi, B.; De Vos, D. Transition-metal-free, oxidative C(sp3)–H arylation of amides with zeolite catalysts. Catalysis Science & Technology 2023, 13, 6274–6280. doi:10.1039/d3cy00880k
  • Wang, Y.; Dana, S.; Long, H.; Xu, Y.; Li, Y.; Kaplaneris, N.; Ackermann, L. Electrochemical Late-Stage Functionalization. Chemical reviews 2023, 123, 11269–11335. doi:10.1021/acs.chemrev.3c00158
  • Chang, Z.; Wang, S.; Huang, J.; Chen, G.; Tang, Z.; Wang, R.; Zhao, D. Copper catalyzed Shono-type oxidation of proline residues in peptide. Science advances 2023, 9, eadj3090. doi:10.1126/sciadv.adj3090
  • Guo, S.; Cai, H.; Luo, W.; Zhang, R.; Xu, Q.; Zheng, S.; Yang, J.; Liu, M. Trimethylsilyl Azide Promoted Shono Oxidation of N,N-Dialkyl Amides. Synlett 2023, 34, 2346–2350. doi:10.1055/a-2159-4847
Other Beilstein-Institut Open Science Activities