Integration of enabling methods for the automated flow preparation of piperazine-2-carboxamide

Richard J. Ingham, Claudio Battilocchio, Joel M. Hawkins and Steven V. Ley
Beilstein J. Org. Chem. 2014, 10, 641–652. https://doi.org/10.3762/bjoc.10.56

Supporting Information

Supporting Information File 1: Experimental data.
Format: PDF Size: 1.2 MB Download
Supporting Information File 2: Control sequence for extended period hydrolysis experiment with monitoring. Alternate web version: http://gist.github.com/richardingham/0a58a291bad2e3b9009f
Format: TXT Size: 4.3 KB Download
Supporting Information File 3: Control sequence for performing DoE experiments. Alternate web version: http://gist.github.com/richardingham/83401127622036c6afd0
Format: TXT Size: 4.2 KB Download
Supporting Information File 4: Control sequence for performing DoE experiments using intermediate from a reservoir. Alternate web version: http://gist.github.com/richardingham/f2117b9dc7504d6e1942
Format: TXT Size: 10.1 KB Download
Supporting Information File 5: Flow chart representation of the control sequence for performing DoE experiments using intermediate from a reservoir.
Format: PNG Size: 138.3 KB Download
Supporting Information File 6: Control sequence for performing two-step hydrogenation process with control and monitoring. Alternate web version: http://gist.github.com/richardingham/31f6f8efa47771c2ed02
Format: TXT Size: 5.6 KB Download

Cite the Following Article

Integration of enabling methods for the automated flow preparation of piperazine-2-carboxamide
Richard J. Ingham, Claudio Battilocchio, Joel M. Hawkins and Steven V. Ley
Beilstein J. Org. Chem. 2014, 10, 641–652. https://doi.org/10.3762/bjoc.10.56

How to Cite

Ingham, R. J.; Battilocchio, C.; Hawkins, J. M.; Ley, S. V. Beilstein J. Org. Chem. 2014, 10, 641–652. doi:10.3762/bjoc.10.56

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Kearney, A. M.; Collins, S. G.; Maguire, A. R. The role of PAT in the development of telescoped continuous flow processes. Reaction Chemistry & Engineering 2024, 9, 990–1013. doi:10.1039/d3re00678f
  • Gérardy, R.; Monbaliu, J.-C. M. Mehrstufige kontinuierliche Durchflussprozesse zur Herstellung von heterocyclischen Wirkstoffen. Flow-Chemie für die Synthese von Heterocyclen; Springer International Publishing, 2024; pp 1–112. doi:10.1007/978-3-031-51912-3_1
  • Labes, R.; Pastre, J. C.; Ingham, R. J.; Battilocchio, C.; Marçon, H. M.; Damião, M. C. F. C. B.; Tran, D. N.; Ley, S. V. Automated multistep synthesis of 2-pyrazolines in continuous flow. Reaction Chemistry & Engineering 2024, 9, 558–565. doi:10.1039/d3re00515a
  • Ivanova, M.; Poisson, T.; Jubault, P.; Chausset-Boissarie, L.; Legros, J. Organic Synthesis in Flow. Reference Module in Chemistry, Molecular Sciences and Chemical Engineering; Elsevier, 2024. doi:10.1016/b978-0-323-96025-0.00046-6
  • Montaner, M. B.; Penny, M. R.; Hilton, S. T. Digitisation of a modular plug and play 3D printed continuous flow system for chemical synthesis. Digital Discovery 2023, 2, 1797–1805. doi:10.1039/d3dd00128h
  • Zhang, Y.; Su, W.-K. A Review of Inline Infrared and Nuclear Magnetic Resonance Applications in Flow Chemistry. Pharmaceutical Fronts 2023, 5, e209–e218. doi:10.1055/s-0043-1776906
  • Eyke, N. S.; Schneider, T. N.; Jin, B.; Hart, T.; Monfette, S.; Hawkins, J. M.; Morse, P. D.; Howard, R. M.; Pfisterer, D. M.; Nandiwale, K. Y.; Jensen, K. F. Parallel multi-droplet platform for reaction kinetics and optimization. Chemical science 2023, 14, 8798–8809. doi:10.1039/d3sc02082g
  • Hielscher, M. M.; Dörr, M.; Schneider, J.; Waldvogel, S. R. LABS: Laboratory Automation and Batch Scheduling - A Modular Open Source Python Program for the Control of Automated Electrochemical Synthesis with a Web Interface. Chemistry, an Asian journal 2023, 18, e202300380. doi:10.1002/asia.202300380
  • Frede, T. A.; Weber, C.; Brockhoff, T.; Christ, T.; Ludwig, D.; Kockmann, N. Data Management of Microscale Reaction Calorimeter Using a Modular Open-Source IoT-Platform. Processes 2023, 11, 279. doi:10.3390/pr11010279
  • O'Brien, M.; Moraru, R. An Automated Computer-Vision "Bubble-Counting" Technique to Characterise CO2 Dissolution into an Acetonitrile Flow Stream in a Teflon AF-2400 Tube-in-Tube Flow Device. ChemPlusChem 2022, 88, e202200167. doi:10.1002/cplu.202200167
  • Rincón, J. A.; Nieves‐Remacha, M. J.; Mateos, C. doi:10.1002/9783527824595.ch2
  • Rodriguez-Zubiri, M.; Felpin, F.-X. Analytical Tools Integrated in Continuous-Flow Reactors: Which One for What?. Organic Process Research & Development 2022, 26, 1766–1793. doi:10.1021/acs.oprd.2c00102
  • Phung Hai, T. A.; Samoylov, A. A.; Rajput, B. S.; Burkart, M. D. Laboratory Ozonolysis Using an Integrated Batch-DIY Flow System for Renewable Material Production. ACS omega 2022, 7, 15350–15358. doi:10.1021/acsomega.1c06823
  • Leadbeater, N. E. Flow Chemistry as an Enabling Technology for Synthetic Organic Chemistry. Methods in Pharmacology and Toxicology; Springer New York, 2021; pp 489–526. doi:10.1007/978-1-0716-1579-9_14
  • Neyt, N. C.; Riley, D. L. Application of reactor engineering concepts in continuous flow chemistry: a review. Reaction Chemistry & Engineering 2021, 6, 1295–1326. doi:10.1039/d1re00004g
  • Häse, F.; Aldeghi, M.; Hickman, R. J.; Roch, L. M.; Christensen, M.; Liles, E.; Hein, J. E.; Aspuru-Guzik, A. Olympus: a benchmarking framework for noisy optimization and experiment planning. Machine Learning: Science and Technology 2021, 2, 035021. doi:10.1088/2632-2153/abedc8
  • Fath, V.; Lau, P.; Greve, C.; Weller, P.; Kockmann, N.; Röder, T. Simultaneous self-optimisation of yield and purity through successive combination of inline FT-IR spectroscopy and online mass spectrometry in flow reactions. Journal of Flow Chemistry 2021, 11, 285–302. doi:10.1007/s41981-021-00140-x
  • Fath, V.; Lau, P.; Greve, C.; Weller, P.; Kockmann, N.; Röder, T. Simultaneous self-optimisation of yield and purity through successive combination of inline FT-IR spectroscopy and online mass spectrometry in flow reactions. Journal of Flow Chemistry 2021, 11, 1–18.
  • Sagmeister, P.; Kaldre, D.; Sedelmeier, J.; Moessner, C.; Püntener, K.; Kummli, D.; Williams, J. D.; Kappe, C. O. Intensified Continuous Flow Synthesis and Workup of 1,5-Disubstituted Tetrazoles Enhanced by Real-Time Process Analytics. Organic Process Research & Development 2021, 25, 1206–1214. doi:10.1021/acs.oprd.1c00096
  • Taylor, C. J.; Baker, A.; Chapman, M. R.; Reynolds, W. R.; Jolley, K. E.; Clemens, G.; Smith, G. E.; Blacker, A. J.; Chamberlain, T. W.; Christie, S. D. R.; Taylor, B. A.; Bourne, R. A. Flow Chemistry for Process Optimisation using Design of Experiments. Journal of Flow Chemistry 2021, 11, 75–86. doi:10.1007/s41981-020-00135-0

Patents

  • NIWA TADAHIRO. ZIRCONIUM HYDROXIDE POWDER. WO 2023074671 A1, May 4, 2023.
Other Beilstein-Institut Open Science Activities