Phosphinate-containing heterocycles: A mini-review

Olivier Berger and Jean-Luc Montchamp
Beilstein J. Org. Chem. 2014, 10, 732–740. https://doi.org/10.3762/bjoc.10.67

Cite the Following Article

Phosphinate-containing heterocycles: A mini-review
Olivier Berger and Jean-Luc Montchamp
Beilstein J. Org. Chem. 2014, 10, 732–740. https://doi.org/10.3762/bjoc.10.67

How to Cite

Berger, O.; Montchamp, J.-L. Beilstein J. Org. Chem. 2014, 10, 732–740. doi:10.3762/bjoc.10.67

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Guo, H.; Wu, Q.; Wang, S.; Shu, H.; Shi, E. Facile Synthesis of H-Phosphinates from P(OR)3 or ClP(OR)2 via SiO2-Promoted Hydrolysis. The Journal of organic chemistry 2024, 89, 8915–8923. doi:10.1021/acs.joc.4c00760
  • Ungpittagul, T.; Virachotikul, A.; Monot, J.; Martín‐Vaca, B.; Bourissou, D. Synthesis and Organo‐Catalyzed Ring‐Opening of a Six‐Membered Heterocycle Combining Phosphonate and Ester Functions. Advanced Synthesis & Catalysis 2024, 366, 733–739. doi:10.1002/adsc.202301334
  • Azzouni, S.; Gaucher, A.; Hassen, S.; Arfaoui, Y.; Marrot, J.; Prim, D.; Efrit, M. L. From Phosphonic Acid to O–P Heterocycles Using MW: An Access to [5]-, [6]- and [8]-Membered Annelated Phosphinates. Chemistry Africa 2023, 7, 1187–1199. doi:10.1007/s42250-023-00816-y
  • Munasinghe, D. S.; Kasper, M.-A.; Jasiński, R.; Kula, K.; Palusiak, M.; Celeda, M.; Mlostoń, G.; Hackenberger, C. P. R. (3+2)-Cyclization Reactions of Unsaturated Phosphonites with Aldehydes and Thioketones. Chemistry (Weinheim an der Bergstrasse, Germany) 2023, 29, e202300806. doi:10.1002/chem.202300806
  • Dou, Q.; Wang, T.; Cheng, B.; Li, C.-J.; Zeng, H. Recent advances in photochemical construction of aromatic C-P bonds via C-hetero bond cleavage. Organic & biomolecular chemistry 2022, 20, 8818–8832. doi:10.1039/d2ob01524b
  • Yadavalli, K. P.; Cummines, J. E.; Carlisle, C. J.; Lepore, S. D. Diastereoselective additions of H-phosphinates to alkenyl ketones under phase-transfer conditions. Chemical communications (Cambridge, England) 2022, 58, 6441–6444. doi:10.1039/d2cc02090d
  • Brel, V. K.; Alekseychuk, E. P.; Artyushin, O. I.; Anikina, L. V. 4-Alkyl-3-azidomethyl-2-ethoxy-2,5-dihydro-5H-1,2-oxaphosphole 2-Oxides: Synthesis and 1,3-Cycloaddition. Synthesis 2021, 54, 1823–1832. doi:10.1055/s-0040-1720922
  • Li, Z.-C.; Zhang, Y.; Yan, B.-X.; Wang, X.-N.; Zhai, D.-H.; Li, Q.; Zheng, H.; Zhao, C.-Q. The conversion of ether bonds to hydroxyl via a base-promoted rearrangement of cyclic phosphine oxides. Organic Chemistry Frontiers 2021, 8, 5693–5698. doi:10.1039/d1qo00925g
  • Sabourin, A.; Dufour, J.; Vors, J.-P.; Bernier, D.; Montchamp, J.-L. Synthesis of P-Substituted 5- and 6-Membered Benzo-Phostams: 2,3-Dihydro-1H-1,2-benzazaphosphole 2-Oxides and 2,3-Tetrahydro-1H-1,2-benzazaphosphinine 2-Oxides. The Journal of organic chemistry 2021, 86, 14684–14694. doi:10.1021/acs.joc.1c01501
  • Finkbeiner, P.; Hehn, J. P.; Gnamm, C. Phosphine Oxides from a Medicinal Chemist’s Perspective: Physicochemical and in Vitro Parameters Relevant for Drug Discovery. Journal of medicinal chemistry 2020, 63, 7081–7107. doi:10.1021/acs.jmedchem.0c00407
  • Abdou, M. M. Synopsis of recent synthetic methods and biological applications of phosphinic acid derivatives. Tetrahedron 2020, 76, 131251. doi:10.1016/j.tet.2020.131251
  • Granger, E.; Solomianko, K.; Young, C.; Erb, J. Exploration of chiral Lewis acid Mg2+ catalysts in the synthesis of aryl organophosphate triesters from phosphorus oxychloride through a three-step, two-pot substitution sequence. Tetrahedron Letters 2018, 59, 1404–1408. doi:10.1016/j.tetlet.2018.02.066
  • Gelat, F.; Roger, M.; Penverne, C.; Mazzad, A.; Rolando, C.; Chausset-Boissarie, L. UV-mediated hydrophosphinylation of unactivated alkenes with phosphinates under batch and flow conditions. RSC advances 2018, 8, 8385–8392. doi:10.1039/c7ra12977g
  • Arndt, S.; Hansmann, M. M.; Rominger, F.; Rudolph, M.; Hashmi, A. S. K. Direct Access to π-Extended Phosphindolium Salts by Simple Proton-Induced Cyclization of (o-Alkynylphenyl)phosphanes. Chemistry (Weinheim an der Bergstrasse, Germany) 2017, 23, 5429–5433. doi:10.1002/chem.201700889
  • Belen’kii, L. I.; Evdokimenkova, Y. B. The Literature of Heterocyclic Chemistry, Part XIV, 2014. Advances in Heterocyclic Chemistry 2017, 122, 245–301. doi:10.1016/bs.aihch.2016.09.002
  • Viveros-Ceballos, J. L.; Ordóñez, M.; Sayago, F. J.; Cativiela, C. Stereoselective Synthesis of α-Amino-C-phosphinic Acids and Derivatives. Molecules (Basel, Switzerland) 2016, 21, 1141. doi:10.3390/molecules21091141
  • Chaturvedi, A. K.; Rastogi, N. Unsaturated Phosphonates as Hauser Acceptors for the Synthesis of Phosphonylated Dihydroxynaphthalenes and Naphthoquinones. The Journal of organic chemistry 2016, 81, 3303–3312. doi:10.1021/acs.joc.6b00312
  • Fu, W. C.; So, C. M.; Kwong, F. Y. Palladium-Catalyzed Phosphorylation of Aryl Mesylates and Tosylates. Organic letters 2015, 17, 5906–5909. doi:10.1021/acs.orglett.5b03104
  • Berger, O.; Montchamp, J.-L. Phosphinate‐Containing Heterocycles: A Mini‐Review. ChemInform 2014, 45. doi:10.1002/chin.201439275
  • Keglevich, G.; Kiss, N. Z.; Mucsi, Z. Synthesis of Phosphinic Acid Derivatives; Traditional Versus up-to-Date Synthetic Procedures. Chemical Sciences Journal 2014, 5, 1–14. doi:10.4172/2150-3494.1000088
Other Beilstein-Institut Open Science Activities