Radical-mediated dehydrative preparation of cyclic imides using (NH4)2S2O8–DMSO: application to the synthesis of vernakalant

Dnyaneshwar N. Garad, Subhash D. Tanpure and Santosh B. Mhaske
Beilstein J. Org. Chem. 2015, 11, 1008–1016. https://doi.org/10.3762/bjoc.11.113

Supporting Information

Supporting Information File 1: Experimental details, characterization data, copies of NMR spectra of all compounds and the details of mechanistic studies.
Format: PDF Size: 2.3 MB Download

Cite the Following Article

Radical-mediated dehydrative preparation of cyclic imides using (NH4)2S2O8–DMSO: application to the synthesis of vernakalant
Dnyaneshwar N. Garad, Subhash D. Tanpure and Santosh B. Mhaske
Beilstein J. Org. Chem. 2015, 11, 1008–1016. https://doi.org/10.3762/bjoc.11.113

How to Cite

Garad, D. N.; Tanpure, S. D.; Mhaske, S. B. Beilstein J. Org. Chem. 2015, 11, 1008–1016. doi:10.3762/bjoc.11.113

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Smolobochkin, A.; Gazizov, A.; Appazov, N.; Sinyashin, O.; Burilov, A. Progress in the Stereoselective Synthesis Methods of Pyrrolidine-Containing Drugs and Their Precursors. International Journal of Molecular Sciences 2024, 25, 11158. doi:10.3390/ijms252011158
  • Guo, Z.; Fan, W.; Ablajan, K. N-acetylation of Aromatic Amines by One-pot Route. Letters in Organic Chemistry 2024, 21, 362–368. doi:10.2174/0115701786266810231005103940
  • Skolia, E.; Kokotos, C. G. Direct Diels‐Alder Reaction of Biomass‐Derived Furfurol with Maleimides in a Bio‐Based Green Solvent. European Journal of Organic Chemistry 2024, 27. doi:10.1002/ejoc.202400105
  • Ma, C.; Hu, Q.; Qin, H.; Yang, G.; Chai, Z. Synthesis of Chiral Vicinal Amino Alcohol Derivatives via Lewis Acid‐Catalyzed Asymmetric Ring Opening of Aziridines with Alcohols and Carboxylic Acids. Advanced Synthesis & Catalysis 2024, 366, 1654–1660. doi:10.1002/adsc.202301429
  • Tretyakov, B. A.; Gadomsky, S. Y.; Terentiev, A. A. A Reaction of N-Substituted Succinimides with Hydroxylamine as a Novel Approach to the Synthesis of Hydroxamic Acids. Organics 2023, 4, 186–195. doi:10.3390/org4020015
  • Sanada, K.; Washio, A.; Nishihata, K.; Yagishita, F.; Yoshida, Y.; Mino, T.; Suzuki, S.; Kasashima, Y.; Sakamoto, M. Chiral Symmetry Breaking of Racemic 3-Phenylsuccinimides via Crystallization-Induced Dynamic Deracemization. Crystal Growth & Design 2021, 21, 6051–6055. doi:10.1021/acs.cgd.1c01010
  • Bhattacharjee, S.; Laru, S.; Ghosh, P.; Hajra, A. Potassium Persulfate Mediated Chemodivergent C-3 Functionalization of 2H-Indazoles with DMSO as C1 Source. The Journal of organic chemistry 2021, 86, 10866–10873. doi:10.1021/acs.joc.1c01188
  • Rasheed, M. K.; Subhi, D. S. M.; Abdulrahnan, A. M. Synthesis, characterization of amic acids and cyclic imides derived from acriflavine and evaluation of their antibacterial and antioxidant activity. Materials Today: Proceedings 2021, 43, 2051–2058. doi:10.1016/j.matpr.2020.11.842
  • Thobokholt, E. N.; Larghi, E. L.; Bracca, A. B. J.; Kaufman, T. S. Isolation and synthesis of cryptosanguinolentine (isocryptolepine), a naturally-occurring bioactive indoloquinoline alkaloid. RSC advances 2020, 10, 18978–19002. doi:10.1039/d0ra03096a
  • Sydnes, M. O. Recent progress in the synthesis of antimalarial indoloquinoline natural products and analogues. Bioactive Natural Products; Elsevier, 2020; Vol. 64, pp 59–84. doi:10.1016/b978-0-12-817903-1.00002-4
  • Lockett-Walters, B.; Trujillo, C.; Twamley, B.; Connon, S. J. The base-catalysed Tamura cycloaddition reaction: calculation, mechanism, isolation of intermediates and asymmetric catalysis. Chemical communications (Cambridge, England) 2019, 55, 11283–11286. doi:10.1039/c9cc05064g
  • Sherikar, M. S.; Prabhu, K. R. Weak Coordinating Carboxylate Directed Rhodium(III)-Catalyzed C–H Activation: Switchable Decarboxylative Heck-Type and [4 + 1] Annulation Reactions with Maleimides. Organic letters 2019, 21, 4525–4530. doi:10.1021/acs.orglett.9b01412
  • Manoharan, R.; Jeganmohan, M. Alkylation, Annulation, and Alkenylation of Organic Molecules with Maleimides by Transition‐Metal‐Catalyzed C‐H Bond Activation. Asian Journal of Organic Chemistry 2019, 8, 1949–1969. doi:10.1002/ajoc.201900054
  • Yang, Z.; Guo, Y.; Ai, S.-L.; Wang, S.; Jinzhi, Z.; Zhang, Y.; Qichao, Z.; Wang, H.-X. Rational design and facile preparation of maleimide-based functional materials for imaging and optoelectronic applications. Materials Chemistry Frontiers 2019, 3, 571–578. doi:10.1039/c8qm00559a
  • Aitken, R. A. Synthesis of Cyclic Imides. Imides; Elsevier, 2019; pp 1–28. doi:10.1016/b978-0-12-815675-9.00001-1
  • Hassanzadeh, F.; Jafari, E. Cyclic imide derivatives: As promising scaffold for the synthesis of antimicrobial agents. Journal of research in medical sciences : the official journal of Isfahan University of Medical Sciences 2018, 23, 53. doi:10.4103/jrms.jrms_539_17
  • Matías, D. M.; Johnson, J. S. Synthesis and Desymmetrization of meso Tricyclic Systems Derived from Benzene Oxide. The Journal of organic chemistry 2018, 83, 4859–4866. doi:10.1021/acs.joc.8b00523
  • Ahire, M. M.; Mhaske, S. B. Isa‒NHC‒catalyzed intermolecular Stetter reaction of aromatic aldehydes with maleimides: An efficient access to 3‒aroylsuccinimides. Tetrahedron 2018, 74, 2079–2084. doi:10.1016/j.tet.2018.03.009
  • Abel, A. S.; Averin, A. D.; Savelyev, E. N.; Orlinson, B. S.; Novakov, I. A.; Beletskaya, I. P. Phosphine-catalyzed [3 + 2] cycloaddition of ethyl buta-2,3-dienoate to adamantane-containing N-substituted maleimides. Mendeleev Communications 2017, 27, 550–552. doi:10.1016/j.mencom.2017.11.003
  • Yoshida, Y.; Endo, T. Dependence of color change of vinylethylene carbonate copolymers having N-substituted maleimides on chemical structure by acid-base switching in solution and solid state. Reactive and Functional Polymers 2017, 120, 139–146. doi:10.1016/j.reactfunctpolym.2017.10.001
Other Beilstein-Institut Open Science Activities