Thermal properties of ruthenium alkylidene-polymerized dicyclopentadiene

Yuval Vidavsky, Yotam Navon, Yakov Ginzburg, Moshe Gottlieb and N. Gabriel Lemcoff
Beilstein J. Org. Chem. 2015, 11, 1469–1474. https://doi.org/10.3762/bjoc.11.159

Cite the Following Article

Thermal properties of ruthenium alkylidene-polymerized dicyclopentadiene
Yuval Vidavsky, Yotam Navon, Yakov Ginzburg, Moshe Gottlieb and N. Gabriel Lemcoff
Beilstein J. Org. Chem. 2015, 11, 1469–1474. https://doi.org/10.3762/bjoc.11.159

How to Cite

Vidavsky, Y.; Navon, Y.; Ginzburg, Y.; Gottlieb, M.; Lemcoff, N. G. Beilstein J. Org. Chem. 2015, 11, 1469–1474. doi:10.3762/bjoc.11.159

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Serrano-Martínez, V. M.; Pérez-Aguilar, H.; Carbonell-Blasco, M. P.; Llobell-Andrés, C.; Aran-Ais, F.; García-García, A.; Orgilés-Calpena, E. Exploring the Mechanical and Thermal Impact of Natural Fillers on Thermoplastic Polyurethane and Styrene–Butadiene Rubber Footwear Sole Materials. Polymers 2024, 16, 3201. doi:10.3390/polym16223201
  • Antonova, A. S.; Zubkov, F. I. Hoveyda-Grubbs type complexes with ruthenium-pnictogen/halcogen/halogen coordination bond. Synthesis, catalytic activity, applications. Russian Chemical Reviews 2024, 93, RCR5132. doi:10.59761/rcr5132
  • López, P. A.; Pham, V. H. B.; Blum, S. A. A General Autofluorescence Method to Characterize Polymerization Progress. Angewandte Chemie 2023, 135. doi:10.1002/ange.202304618
  • López, P. A.; Pham, V. H. B.; Blum, S. A. A General Autofluorescence Method to Characterize Polymerization Progress. Angewandte Chemie (International ed. in English) 2023, 62, e202304618. doi:10.1002/anie.202304618
  • Suslick, B. A.; Hemmer, J.; Groce, B. R.; Stawiasz, K. J.; Geubelle, P. H.; Malucelli, G.; Mariani, A.; Moore, J. S.; Pojman, J. A.; Sottos, N. R. Frontal Polymerizations: From Chemical Perspectives to Macroscopic Properties and Applications. Chemical reviews 2023, 123, 3237–3298. doi:10.1021/acs.chemrev.2c00686
  • Eivgi, O.; Blum, S. A. Real-Time Polymer Viscosity-Catalytic Activity Relationships on the Microscale. Journal of the American Chemical Society 2022, 144, 13574–13585. doi:10.1021/jacs.2c03711
  • Verker, R.; Wallach, E. R.; Vidavsky, Y.; Bolker, A.; Gouzman, I. Novel axial dynamic mechanical analysis setup for thermo-analytical study and curing kinetics optimization of thermoset adhesives. The Review of scientific instruments 2022, 93, 034104. doi:10.1063/5.0079002
  • Husted, K. E. L.; Shieh, P.; Lundberg, D. J.; Kristufek, S. L.; Johnson, J. A. Molecularly Designed Additives for Chemically Deconstructable Thermosets without Compromised Thermomechanical Properties. ACS macro letters 2021, 10, 805–810. doi:10.1021/acsmacrolett.1c00255
  • Yang, X.; Murphy, L. M.; Haque, F. M.; Grayson, S. M.; Boydston, A. J. A highly efficient metal-free protocol for the synthesis of linear polydicyclopentadiene. Polymer Chemistry 2021, 12, 2860–2867. doi:10.1039/d1py00191d
  • Eivgi, O.; Vaisman, A.; Lemcoff, N. G. Latent, Yet Highly Active Photoswitchable Olefin Metathesis Precatalysts Bearing Cyclic Alkyl Amino Carbene (CAAC)/Phosphite Ligands. ACS Catalysis 2020, 11, 703–709. doi:10.1021/acscatal.0c04909
  • Та, К. К.; Бондалетов, В. Г.; Огородников, В. Д.; Бондалетова, Л. И. Термоокислительная деструкция композиций полидициклопентадиена с хлорсодержащими антипиренами. Plasticheskie massy 2020, 1, 8–10. doi:10.35164/0554-2901-2020-11-12-8-10
  • Eivgi, O.; Phatake, R. S.; Nechmad, N. B.; Lemcoff, N. G. Light-Activated Olefin Metathesis: Catalyst Development, Synthesis, and Applications. Accounts of chemical research 2020, 53, 2456–2471. doi:10.1021/acs.accounts.0c00495
  • Yeşil, R.; Çetinkaya, S. Mn 3 O 4 /p(DCPD)HIPE nanocomposites as an efficient catalyst for oxidative degradation of phenol. Journal of Nanoparticle Research 2020, 22, 1–14. doi:10.1007/s11051-020-04931-6
  • Phatake, R. S.; Masarwa, A.; Lemcoff, N. G.; Reany, O. Tuning thermal properties of cross-linked DCPD polymers by functionalization, initiator type and curing methods. Polymer Chemistry 2020, 11, 1742–1751. doi:10.1039/c9py01178a
  • Eivgi, O.; Vaisman, A.; Nechmad, N. B.; Baranov, M.; Lemcoff, N. G. Latent Ruthenium Benzylidene Phosphite Complexes for Visible-Light-Induced Olefin Metathesis. ACS Catalysis 2019, 10, 2033–2038. doi:10.1021/acscatal.9b05079
  • Cuthbert, T. J.; Li, T.; Speed, A. W. H.; Wulff, J. E. Structure of the Thermally Induced Cross-Link in C-Linked Methyl Ester-Functionalized Polydicyclopentadiene (fPDCPD). Macromolecules 2018, 51, 2038–2047. doi:10.1021/acs.macromol.7b02750
  • Steese, N. D.; Barvaliya, D.; Poole, X. D.; McLemore, D. E.; DiCesare, J. C.; Schanz, H.-J. Synthesis and thermal properties of linear polydicyclopentadiene via ring-opening metathesis polymerization with a third generation grubbs-type ruthenium-alkylidene complex. Journal of Polymer Science Part A: Polymer Chemistry 2017, 56, 359–364. doi:10.1002/pola.28909
  • Cuthbert, T. J.; Chen, J.; Burns, F. P.; Moffitt, M. G.; Wulff, J. E. Correction to “Thermally Crosslinked Functionalized Polydicyclopentadiene with a High Tg and Tunable Surface Energy”. ACS omega 2017, 2, 2593. doi:10.1021/acsomega.7b00685
  • Julia, B.; Sen, S.; Schowner, R.; Nagy, G. M.; Wang, D.; Buchmeiser, M. R. Tailored molybdenum imido alkylidene N -heterocyclic carbene complexes as latent catalysts for the polymerization of dicyclopentadiene. Journal of Polymer Science Part A: Polymer Chemistry 2017, 55, 3028–3033. doi:10.1002/pola.28578
  • Buchmeiser, M. R. Tandem Ring-Opening Metathesis – Vinyl Insertion Polymerization: Fundamentals and Application to Functional Polyolefins. Macromolecular rapid communications 2017, 38, 1600672. doi:10.1002/marc.201600672
Other Beilstein-Institut Open Science Activities