The enantioselective synthesis of (S)-(+)-mianserin and (S)-(+)-epinastine

Piotr Roszkowski, Jan. K. Maurin and Zbigniew Czarnocki
Beilstein J. Org. Chem. 2015, 11, 1509–1513. https://doi.org/10.3762/bjoc.11.164

Supporting Information

Supporting Information File 1: Experimental procedures, spectroscopic and analytical data, and copies of NMR spectra for all described compounds.
Format: PDF Size: 778.5 KB Download

Cite the Following Article

The enantioselective synthesis of (S)-(+)-mianserin and (S)-(+)-epinastine
Piotr Roszkowski, Jan. K. Maurin and Zbigniew Czarnocki
Beilstein J. Org. Chem. 2015, 11, 1509–1513. https://doi.org/10.3762/bjoc.11.164

How to Cite

Roszkowski, P.; Maurin, J. K.; Czarnocki, Z. Beilstein J. Org. Chem. 2015, 11, 1509–1513. doi:10.3762/bjoc.11.164

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Hu, L.; Zhang, J.; Li, M.; Feng, Y.; Lu, F. Electrochemical oxidative radical cascade cyclization of dienes and diselenides towards the synthesis of seleno-benzazepines. RSC advances 2024, 14, 12556–12560. doi:10.1039/d4ra01914h
  • Guo, C.; Li, L.; Yan, Q.; Zhou, H.; Liu, Z.-Q.; Li, Z. Photoinduced Tandem Cyanomethylation/Cyclization of Unsaturated Compounds: Access to Cyanomethylated 7- or 5-Membered N-Heterocycles. The Journal of organic chemistry 2023, 88, 12141–12149. doi:10.1021/acs.joc.3c01290
  • Rajput, A.; Manna, T.; Mondal, A.; De, A.; Mondal, J.; Husain, S. M. Biocatalytic Access to Chiral Benzazepines Using Imine Reductases. ACS Catalysis 2023, 13, 6185–6194. doi:10.1021/acscatal.3c00146
  • Zhang, X.; Gao, Y.; Miao, Z. Palladium‐Catalyzed Asymmetric [4+3] Cycloadditions of Indene‐2‐carbaldehydes with 4‐Vinylbenzoxazinanones Toward Polycyclic 5H‐Benzo[b]azepines. Advanced Synthesis & Catalysis 2023, 365, 381–387. doi:10.1002/adsc.202201199
  • Zhang, X.; Wang, X.; Jiao, C.; Zhao, J.; Liu, X.; Zhang, G. Transition-metal-free, mild and efficient ring expansion of amino acid derivatives: facile access to densely functionalized azepines. Organic Chemistry Frontiers 2022, 9, 5516–5522. doi:10.1039/d2qo01147f
  • Xu, L.; Guo, F.-W.; Zhang, X.-Q.; Zhou, T.-Y.; Wang, C.-J.; Wei, M.-Y.; Gu, Y.-C.; Wang, C.-Y.; Shao, C.-L. Discovery, total syntheses and potent anti-inflammatory activity of pyrrolinone-fused benzoazepine alkaloids Asperazepanones A and B from Aspergillus candidus. Communications chemistry 2022, 5, 80. doi:10.1038/s42004-022-00696-2
  • Ren, Y.; Yan, Q.; Li, Y.; Gao, Y.; Zhao, J.; Li, L.; Liu, Z.-Q.; Li, Z. Free Radical Promoted Trifluoromethylthiolation of Alkynes to Access SCF3-Containing Dibenzazepines or Dioxodibenzothiazepines. The Journal of organic chemistry 2022, 87, 8773–8781. doi:10.1021/acs.joc.2c00623
  • Wang, L.; Zhang, Y.; Zhu, T.; Wu, J. Difluoromethylarylation of Alkynes from [Bis(difluoroacetoxy)iodo]benzene: Access to CF2H-Containing Dibenzazepines. The Journal of organic chemistry 2022, 87, 7551–7556. doi:10.1021/acs.joc.2c00584
  • Fan, W.; Xiang, S.; Li, Y.; Zhang, W.; Guo, S.; Huang, D. Iodine-Mediated Pyridine Ring Expansion for the Construction of Azepines. Organic letters 2022, 24, 2075–2080. doi:10.1021/acs.orglett.2c00130
  • Xiao, Q.; Tong, Q.-X.; Zhong, J.-J. Recent Progress on the Synthesis of Benzazepine Derivatives via Radical Cascade Cyclization Reactions. Chinese Journal of Organic Chemistry 2022, 42, 3979. doi:10.6023/cjoc202209025
  • Shen, X.-Q.; Yan, X.-W.; Zhang, X.-G. A palladium-catalyzed ring-expansion reaction of cyclobutanols with 2-haloanilines leading to benzazepines and quinolines. Chemical communications (Cambridge, England) 2021, 57, 10234–10237. doi:10.1039/d1cc04395a
  • Qu, C.-H.; Song, G.-T.; Ou, J.-H.; Tang, D.; Xu, Z.-G.; Chen, Z.-Z. Visible light-mediated construction of sulfonated dibenzazepines. Chinese Journal of Chemistry 2021, 39, 2220–2226. doi:10.1002/cjoc.202100194
  • Yao, Y.; Yin, Z.; He, F.-S.; Qin, X.; Xie, W.; Wu, J. Photoinduced intramolecular carbosulfonylation of alkynes: access to sulfone-containing dibenzazepines from sulfur dioxide. Chemical communications (Cambridge, England) 2021, 57, 2883–2886. doi:10.1039/d0cc07927h
  • Zhang, Y.; Qingqing, B.; Zhang, N.; Wang, S.; Yu, X. Stereocontrolled addition of Grignard reagents to oxa-bridged benzazepines: highly efficient synthesis of functionalized benzazepine scaffolds. RSC advances 2020, 10, 41802–41806. doi:10.1039/d0ra08758k
  • Yu, Y.; Ma, L.; Xia, J.; Xin, L.; Zhu, L.; Huang, X. A Modular Approach to Dibenzo-fused ϵ-Lactams: Palladium-Catalyzed Bridging-C−H Activation. Angewandte Chemie (International ed. in English) 2020, 59, 18261–18266. doi:10.1002/anie.202007799
  • Yu, Y.; Ma, L.; Xia, J.; Xin, L.; Zhu, L.; Huang, X. A Modular Approach to Dibenzo‐fused ε‐Lactams: Palladium Carbene Bridging C‐H Activation and Its Synthetic Application. Angewandte Chemie 2020, 132, 18418–18423. doi:10.1002/ange.202007799
  • Xu, Y.; Zhang, L.; Liu, M.; Zhang, X.; Zhang, X.; Fan, X. Synthesis of benzoazepine derivatives via Rh(III)-catalyzed inert C(sp2)–H functionalization and [4 + 3] annulation. Organic & biomolecular chemistry 2019, 17, 8706–8710. doi:10.1039/c9ob01830a
  • Qi, X.-K.; Zhang, H.; Pan, Z.-T.; Liang, R.-B.; Zhu, C.-M.; Li, J.-H.; Tong, Q.-X.; Gao, X.-W.; Wu, L.-Z.; Zhong, J.-J. Photoinduced synthesis of fluorinated dibenz[b,e]azepines via radical triggered cyclization. Chemical communications (Cambridge, England) 2019, 55, 10848–10851. doi:10.1039/c9cc04977k
  • Liu, D.; Jiao, M.-J.; Wang, X.-Z.; Xu, P.-F. Metal-Free Visible-Light-Induced Construction of Difluoro-Containing Dibenzazepines. Organic letters 2019, 21, 4745–4749. doi:10.1021/acs.orglett.9b01629
  • Stockerl, S.; Danelzik, T.; Piekarski, D. G.; Mancheño, O. G. Mild, Metal-Free Oxidative Ring-Expansion Approach for the Synthesis of Benzo[ b]azepines. Organic letters 2019, 21, 4535–4539. doi:10.1021/acs.orglett.9b01433
Other Beilstein-Institut Open Science Activities