Engineering Pichia pastoris for improved NADH regeneration: A novel chassis strain for whole-cell catalysis

Martina Geier, Christoph Brandner, Gernot A. Strohmeier, Mélanie Hall, Franz S. Hartner and Anton Glieder
Beilstein J. Org. Chem. 2015, 11, 1741–1748. https://doi.org/10.3762/bjoc.11.190

Supporting Information

Supporting Information File 1: Schematic representation of knock-out cassette architecture and sequences of primers used.
Format: PDF Size: 102.0 KB Download

Cite the Following Article

Engineering Pichia pastoris for improved NADH regeneration: A novel chassis strain for whole-cell catalysis
Martina Geier, Christoph Brandner, Gernot A. Strohmeier, Mélanie Hall, Franz S. Hartner and Anton Glieder
Beilstein J. Org. Chem. 2015, 11, 1741–1748. https://doi.org/10.3762/bjoc.11.190

How to Cite

Geier, M.; Brandner, C.; Strohmeier, G. A.; Hall, M.; Hartner, F. S.; Glieder, A. Beilstein J. Org. Chem. 2015, 11, 1741–1748. doi:10.3762/bjoc.11.190

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Khalifeh Soltani, M.; Arjmand, S.; Ranaei Siadat, S. O.; Bagheri, A.; Marashi, S. H. Hansenula polymorpha methanol metabolism genes enhance recombinant protein production in Komagataella phaffi. AMB Express 2024, 14, 88. doi:10.1186/s13568-024-01743-y
  • Wang, X.; Wang, P.; Li, W.; Zhu, C.; Fan, D. Effect and mechanism of signal peptide and maltose on recombinant type III collagen production in Pichia pastoris. Applied microbiology and biotechnology 2023, 107, 4369–4380. doi:10.1007/s00253-023-12579-0
  • Rinnofner, C.; Felber, M.; Pichler, H. Strains and Molecular Tools for Recombinant Protein Production in Pichia pastoris. Methods in molecular biology (Clifton, N.J.) 2022, 2513, 79–112. doi:10.1007/978-1-0716-2399-2_6
  • Yu, Y.-F.; Yang, J.; Zhao, F.; Lin, Y.; Han, S. Comparative transcriptome and metabolome analyses reveal the methanol dissimilation pathway of Pichia pastoris. BMC genomics 2022, 23, 366. doi:10.1186/s12864-022-08592-8
  • Bustos, C.; Quezada, J.; Veas, R.; Altamirano, C.; Braun-Galleani, S.; Fickers, P.; Berrios, J. Advances in Cell Engineering of the Komagataella phaffii Platform for Recombinant Protein Production. Metabolites 2022, 12, 346. doi:10.3390/metabo12040346
  • Guo, Y.; Liao, Y.; Wang, J.; Ma, C.; Qin, J.; Feng, J.; Li, Y.; Wang, X.; Chen, K. Methylotrophy of Pichia pastoris: Current Advances, Applications, and Future Perspectives for Methanol-Based Biomanufacturing. ACS Sustainable Chemistry & Engineering 2022, 10, 1741–1752. doi:10.1021/acssuschemeng.1c07755
  • De, S.; Mattanovich, D.; Ferrer, P.; Gasser, B. Established tools and emerging trends for the production of recombinant proteins and metabolites in Pichia pastoris. Essays in biochemistry 2021, 65, 293–307. doi:10.1042/ebc20200138
  • Liu, T.; Liu, B.; Zhou, H.; Zhang, J. Knockout of the DAS gene increases S-adenosylmethionine production in Komagataella phaffii. Biotechnology & Biotechnological Equipment 2020, 35, 29–36. doi:10.1080/13102818.2020.1837012
  • Yang, Y.; Liu, G.; Chen, X.; Liu, M.; Zhan, C.; Liu, X.; Bai, Z. High efficiency CRISPR/Cas9 genome editing system with an eliminable episomal sgRNA plasmid in Pichia pastoris. Enzyme and microbial technology 2020, 138, 109556. doi:10.1016/j.enzmictec.2020.109556
  • Wiltschi, B.; Cernava, T.; Dennig, A.; Casas, M. G.; Geier, M.; Gruber, S.; Haberbauer, M.; Heidinger, P.; Acero, E. H.; Kratzer, R.; Luley-Goedl, C.; Müller, C. A.; Pitzer, J.; Ribitsch, D.; Sauer, M.; Schmölzer, K.; Schnitzhofer, W.; Sensen, C. W.; Soh, J.; Steiner, K.; Winkler, C. K.; Winkler, M.; Wriessnegger, T. Enzymes revolutionize the bioproduction of value-added compounds: From enzyme discovery to special applications. Biotechnology advances 2020, 40, 107520. doi:10.1016/j.biotechadv.2020.107520
  • Fischer, J. E.; Glieder, A. Current advances in engineering tools for Pichia pastoris. Current opinion in biotechnology 2019, 59, 175–181. doi:10.1016/j.copbio.2019.06.002
  • Zhu, T.; Sun, H.; Wang, M.; Li, Y. Pichia pastoris as a Versatile Cell Factory for the Production of Industrial Enzymes and Chemicals: Current Status and Future Perspectives. Biotechnology journal 2019, 14, 1800694. doi:10.1002/biot.201800694
  • Rahman, Z. U.; Nawab, J.; Sung, B. H.; Kim, S. C. A Critical Analysis of Bio-Hydrocarbon Production in Bacteria: Current Challenges and Future Directions. Energies 2018, 11, 2663. doi:10.3390/en11102663
  • Zepeda, A. B.; Pessoa, A.; Farías, J. G. Carbon metabolism influenced for promoters and temperature used in the heterologous protein production using Pichia pastoris yeast. Brazilian journal of microbiology : [publication of the Brazilian Society for Microbiology] 2018, 49, 119–127. doi:10.1016/j.bjm.2018.03.010
  • Uzir, M. H.; Najimudin, N. On the bi-enzymatic behaviour of Saccharomyces cerevisiae-mediated stereoselective biotransformation of 2,6,6-trimethylcyclohex-2-ene-1,4-dione. Molecular Catalysis 2018, 447, 56–64. doi:10.1016/j.mcat.2018.01.002
  • Weninger, A.; Fischer, J. E.; Raschmanová, H.; Kniely, C.; Vogl, T.; Glieder, A. Expanding the CRISPR/Cas9 toolkit for Pichia pastoris with efficient donor integration and alternative resistance markers. Journal of cellular biochemistry 2017, 119, 3183–3198. doi:10.1002/jcb.26474
  • Theron, C. W.; Berrios, J.; Delvigne, F.; Fickers, P. Integrating metabolic modeling and population heterogeneity analysis into optimizing recombinant protein production by Komagataella (Pichia) pastoris. Applied microbiology and biotechnology 2017, 102, 63–80. doi:10.1007/s00253-017-8612-y
  • Schwarzhans, J. P.; Luttermann, T.; Geier, M.; Kalinowski, J.; Friehs, K. Towards systems metabolic engineering in Pichia pastoris. Biotechnology advances 2017, 35, 681–710. doi:10.1016/j.biotechadv.2017.07.009
  • Yang, D.; Zou, H.; Wu, Y.; Shi, J.; Zhang, S.; Wang, X.; Han, P.; Tong, Z.; Jiang, Z. Constructing Quantum Dots@Flake Graphitic Carbon Nitride Isotype Heterojunctions for Enhanced Visible-Light-Driven NADH Regeneration and Enzymatic Hydrogenation. Industrial & Engineering Chemistry Research 2017, 56, 6247–6255. doi:10.1021/acs.iecr.7b00912
  • Sturmberger, L.; G, C. T.; Geier, M.; Krainer, F. W.; Day, K. J.; Vide, U.; Trstenjak, S.; Schiefer, A.; Richardson, T.; Soriaga, L.; Darnhofer, B.; Birner-Gruenberger, R.; Glick, B. S.; Tolstorukov, I. I.; Cregg, J. M.; Madden, K.; Glieder, A. Refined Pichia pastoris reference genome sequence. Journal of biotechnology 2016, 235, 121–131. doi:10.1016/j.jbiotec.2016.04.023
Other Beilstein-Institut Open Science Activities