Cite the Following Article
A comprehensive study of olefin metathesis catalyzed by Ru-based catalysts
Albert Poater and Luigi Cavallo
Beilstein J. Org. Chem. 2015, 11, 1767–1780.
https://doi.org/10.3762/bjoc.11.192
How to Cite
Poater, A.; Cavallo, L. Beilstein J. Org. Chem. 2015, 11, 1767–1780. doi:10.3762/bjoc.11.192
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Brotons-Rufes, A.; Bahri-Laleh, N.; Poater, A. H-Bonding leading to latent initiators for olefin metathesis polymerization. Faraday discussions 2023, 244, 252–268. doi:10.1039/d2fd00163b
- Freindorf, M.; Kraka, E. Looking behind the scenes of Grubbs catalysis with the Unified Reaction Valley Approach. Chemical Reactivity; Elsevier, 2023; pp 301–346. doi:10.1016/b978-0-32-390257-1.00017-6
- Pump, E.; Poater, A.; Bahri-Laleh, N.; Credendino, R.; Serra, L.; Scarano, V.; Cavallo, L. Regio, stereo and chemoselectivity of 2nd generation Grubbs ruthenium-catalyzed olefin metathesis. Catalysis Today 2022, 388-389, 394–402. doi:10.1016/j.cattod.2020.04.071
- Martínez, J. P.; Trzaskowski, B. Olefin Metathesis Catalyzed by a Hoveyda-Grubbs-like Complex Chelated to Bis(2-mercaptoimidazolyl) Methane: A Predictive DFT Study. The journal of physical chemistry. A 2022, 126, 720–732. doi:10.1021/acs.jpca.1c09336
- Martínez, J. P.; Solà, M.; Poater, A. Predictive catalysis in olefin metathesis with Ru-based catalysts with annulated C60 fullerenes in the N-heterocyclic carbenes. Chemistry (Weinheim an der Bergstrasse, Germany) 2021, 27, 18074–18083. doi:10.1002/chem.202100840
- Podewitz, M.; Sen, S.; Buchmeiser, M. R. On the Origin of E-Selectivity in the Ring-Opening Metathesis Polymerization with Molybdenum Imido Alkylidene N-Heterocyclic Carbene Complexes. Organometallics 2021, 40, 2478–2488. doi:10.1021/acs.organomet.1c00229
- Zhou, Z.; Xie, Q.; Li, J.; Yuan, Y.; Liu, Y.; Liu, Y.; Lu, D.; Xie, Y. Glucopyranoside-Functionalized NHCs-Pd(II)-PEPPSI Complexes: Anomeric Isomerism Controlled and Catalytic Activity in Aqueous Suzuki Reaction. Catalysis Letters 2021, 152, 838–847. doi:10.1007/s10562-021-03654-0
- Zhou, Z.; Xie, Q.; Li, J.; Yuan, Y.; Liu, Y.; Liu, Y.; Lu, D.; Xie, Y.-R. Glucopyranoside-Functionalized NHCs-Pd(II)-PEPPSI Complexes: Anomeric Isomerism Controlled and Catalytic Activity in Aqueous Suzuki Reaction. Catalysis Letters 2021, 1–10.
- Mesa, L. M. A.; Vummaleti, S. V. C.; Zhang, Z.; Poater, A.; Cavallo, L. σ/π Plasticity of NHCs on the Ruthenium–Phosphine and Ruthenium═Ylidene Bonds in Olefin Metathesis Catalysts. Organometallics 2020, 39, 3972–3982. doi:10.1021/acs.organomet.0c00536
- Poater, A.; D'Alterio, M. C.; Talarico, G.; Chauvin, R. Arene vs. Alkene Substrates in Ru‐Catalyzed Olefin Metathesis: a DFT Investigation. European Journal of Organic Chemistry 2020, 2020, 4743–4749. doi:10.1002/ejoc.202000725
- Pareras, G.; Tiana, D.; Poater, A. MOF Encapsulation of Ru Olefin Metathesis Catalysts to Block Catalyst Decomposition. Catalysts 2020, 10, 687. doi:10.3390/catal10060687
- Smit, W.; Foscato, M.; Occhipinti, G.; Jensen, V. R. Ethylene-Triggered Formation of Ruthenium Alkylidene from Decomposed Catalyst. ACS Catalysis 2020, 10, 6788–6797. doi:10.1021/acscatal.0c02206
- D'Alterio, M. C.; Yuan, Y.-C.; Bruneau, C.; Talarico, G.; Gramage-Doria, R.; Poater, A. Base-controlled product switch in the ruthenium-catalyzed protodecarbonylation of phthalimides: a mechanistic study. Catalysis Science & Technology 2020, 10, 180–186. doi:10.1039/c9cy02047k
- Gimferrer, M.; Salvador, P.; Poater, A. Computational Monitoring of Oxidation States in Olefin Metathesis. Organometallics 2019, 38, 4585–4592. doi:10.1021/acs.organomet.9b00591
- Voccia, M.; Nolan, S. P.; Cavallo, L.; Poater, A. The activity of indenylidene derivatives in olefin metathesis catalysts. Beilstein journal of organic chemistry 2018, 14, 2956–2963. doi:10.3762/bjoc.14.275
- Kang, C.; Kwon, S.; Sung, J.-C.; Kim, J. W.; Baik, M.-H.; Choi, T.-L. Living Metathesis and Metallotropy Polymerization Gives Conjugated Polyenynes from Multialkynes: How to Design Sequence-Specific Cascades for Polymers. Journal of the American Chemical Society 2018, 140, 16320–16329. doi:10.1021/jacs.8b10269
- Jung, H.; Jung, K.; Hong, M.; Kwon, S.; Kim, K.; Hong, S. H.; Choi, T.-L.; Baik, M.-H. Understanding the Origin of the Regioselectivity in Cyclopolymerizations of Diynes and How to Completely Switch It. Journal of the American Chemical Society 2018, 140, 834–841. doi:10.1021/jacs.7b11968
- Urrutia, J. A. L.; Andrés, M. G.; Cruañas, È. C.; Teixidor, A. P. In Silico Switch from Second- to First-Row Transition Metals in Olefin Metathesis: From Ru to Fe and from Rh to Co. Catalysts 2017, 7, 389. doi:10.3390/catal7120389
- Occhipinti, G.; Törnroos, K. W.; Jensen, V. R. Pyridine-Stabilized Fast-Initiating Ruthenium Monothiolate Catalysts for Z-Selective Olefin Metathesis. Organometallics 2017, 36, 3284–3292. doi:10.1021/acs.organomet.7b00441
- Arnedo, L.; Chauvin, R.; Poater, A. Olefin Metathesis with Ru-Based Catalysts Exchanging the Typical N-Heterocyclic Carbenes by a Phosphine–Phosphonium Ylide. Catalysts 2017, 7, 85. doi:10.3390/catal7030085