Nitro-Grela-type complexes containing iodides – robust and selective catalysts for olefin metathesis under challenging conditions

Andrzej Tracz, Mateusz Matczak, Katarzyna Urbaniak and Krzysztof Skowerski
Beilstein J. Org. Chem. 2015, 11, 1823–1832. https://doi.org/10.3762/bjoc.11.198

Supporting Information

Supporting Information File 1: Experimental and spectral data for nG-I2, nG-SIPr-I2 and the test reactions.
Format: PDF Size: 562.1 KB Download

Cite the Following Article

Nitro-Grela-type complexes containing iodides – robust and selective catalysts for olefin metathesis under challenging conditions
Andrzej Tracz, Mateusz Matczak, Katarzyna Urbaniak and Krzysztof Skowerski
Beilstein J. Org. Chem. 2015, 11, 1823–1832. https://doi.org/10.3762/bjoc.11.198

How to Cite

Tracz, A.; Matczak, M.; Urbaniak, K.; Skowerski, K. Beilstein J. Org. Chem. 2015, 11, 1823–1832. doi:10.3762/bjoc.11.198

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Giger, A. I.; Voldrich, J. C.; Michel, B. W. An Amplificative Detection Approach for Autocatalytic Sensing of Ethylene. Journal of the American Chemical Society 2025, 147, 11654–11661. doi:10.1021/jacs.5c00854
  • Foster, J. C.; Dishner, I. T.; Damron, J. T.; Kertesz, V.; Popovs, I.; Saito, T. Toward Efficient Entropic Recycling by Mastering Ring–Chain Kinetics. Macromolecules 2025, 58, 2694–2700. doi:10.1021/acs.macromol.4c03090
  • Du, Z.; Ji, C.; Wang, X.; Zhang, S.; Wang, Z.; You, Y. Nickel(II)-Catalyzed Cycloisomerization of 1,6-Dienes. Synthesis 2025, 57, 1306–1312. doi:10.1055/a-2508-3790
  • Iudanov, K.; Nechmad, N. B.; Poater, A.; Lemcoff, N. G. Selective Cross‐Metathesis Versus Ring‐Closing Metathesis of Terpenes, Taking the Path Less Travelled. Angewandte Chemie 2024, 136. doi:10.1002/ange.202412430
  • Iudanov, K.; Nechmad, N. B.; Poater, A.; Lemcoff, N. G. Selective Cross-Metathesis Versus Ring-Closing Metathesis of Terpenes, Taking the Path Less Travelled. Angewandte Chemie (International ed. in English) 2024, 63, e202412430. doi:10.1002/anie.202412430
  • Ekeli, J. B.; Foscato, M.; Blanco, C. O.; Occhipinti, G.; Fogg, D. E.; Jensen, V. R. Enabling Automation of de Novo Catalyst Design: An Experimentally Validated, Multifactor Design Metric for Olefin Metathesis. ACS Catalysis 2024, 14, 16731–16747. doi:10.1021/acscatal.4c06212
  • Morita, I.; Ward, T. R. Recent advances in the design and optimization of artificial metalloenzymes. Current opinion in chemical biology 2024, 81, 102508. doi:10.1016/j.cbpa.2024.102508
  • Ingram, A. A.; Wang, D.; Schwaneberg, U.; Okuda, J. Grubbs-Hoveyda catalysts conjugated to a β-barrel protein: Effect of halide substitution on aqueous olefin metathesis activity. Journal of inorganic biochemistry 2024, 258, 112616. doi:10.1016/j.jinorgbio.2024.112616
  • Nasibullin, I.; Yoshioka, H.; Mukaimine, A.; Nakamura, A.; Kusakari, Y.; Chang, T.-C.; Tanaka, K. Catalytic olefin metathesis in blood. Chemical science 2023, 14, 11033–11039. doi:10.1039/d3sc03785a
  • Nechmad, N. B.; Iudanov, K.; Tarannam, N.; Kobernik, V.; Kozuch, S.; Lemcoff, N. G. Coordinating Additives as Activity Modulators in Diiodo Latent Olefin Metathesis Catalysts. ChemCatChem 2023, 15. doi:10.1002/cctc.202201690
  • Alassad, N.; Nechmad, N. B.; Phatake, R. S.; Reany, O.; Lemcoff, N. G. Steric and electronic effects in latent S-chelated olefin metathesis catalysts. Catalysis Science & Technology 2023, 13, 321–328. doi:10.1039/d2cy00943a
  • Jawiczuk, M.; Kuźmierkiewicz, N.; Nowacka, A. M.; Moreń, M.; Trzaskowski, B. Mechanistic, Computational Study of Alkene-Diazene Heterofunctional Cross-Metathesis Catalyzed by Ruthenium Complexes. Organometallics 2023, 42, 146–156. doi:10.1021/acs.organomet.2c00516
  • Blanco, C. O.; Fogg, D. E. Water-Accelerated Decomposition of Olefin Metathesis Catalysts. ACS catalysis 2023, 13, 1097–1102. doi:10.1021/acscatal.2c05573
  • Leyva-Pérez, A.; Garnes-Portolés, F.; Sánchez-Quesada, J.; Espinós-Ferri, E. Synthesis of Dehydromuscone by an Alkene Metathesis Macrocyclization Reaction at 0.2 M Concentration. Synlett 2022, 33, 1933–1937. doi:10.1055/a-1932-9317
  • Phatake, R. S.; Nechmad, N. B.; Reany, O.; Lemcoff, N. G. Highly Substrate‐Selective Macrocyclic Ring Closing Metathesis. Advanced Synthesis & Catalysis 2022, 364, 1465–1472. doi:10.1002/adsc.202101515
  • Saied, E. M.; Arenz, C. Stereoselective Synthesis of Novel Sphingoid Bases Utilized for Exploring the Secrets of Sphinx. International journal of molecular sciences 2021, 22, 8171. doi:10.3390/ijms22158171
  • Nascimento, D. L.; Foscato, M.; Occhipinti, G.; Jensen, V. R.; Fogg, D. E. Bimolecular Coupling in Olefin Metathesis: Correlating Structure and Decomposition for Leading and Emerging Ruthenium-Carbene Catalysts. Journal of the American Chemical Society 2021, 143, 11072–11079. doi:10.1021/jacs.1c04424
  • Blanco, C. O.; Nascimento, D. L.; Fogg, D. E. Routes to High-Performing Ruthenium-Iodide Catalysts for Olefin Metathesis: Ligand Lability Is Key to Efficient Halide Exchange. Organometallics 2021, 40, 1811–1816. doi:10.1021/acs.organomet.1c00253
  • Patra, S. G.; Das, N. K. Recent advancement on the mechanism of olefin metathesis by Grubbs catalysts: A computational perspective. Polyhedron 2021, 200, 115096. doi:10.1016/j.poly.2021.115096
  • Nechmad, N. B.; Kobernik, V.; Tarannam, N.; Phatake, R.; Eivgi, O.; Kozuch, S.; Lemcoff, N. G. Reactivity and Selectivity in Ruthenium Sulfur‐Chelated Diiodo Catalysts. Angewandte Chemie 2021, 133, 6442–6446. doi:10.1002/ange.202014929

Patents

  • CHWALBA MICHAL; GAWIN ANNA; SKOWERSKI KRZYSZTOF. RUTHENIUM COMPLEX AND METHOD OF CONDUCTING OLEFIN METATHESIS REACTIONS WITH FORMATION OF AN INTERNAL BOND USING THE RUTHENIUM COMPLEX AS A CATALYST. WO 2021130622 A3, Aug 5, 2021.
Other Beilstein-Institut Open Science Activities