Supporting Information
Supporting Information File 1: Instrumental setup, general procedure for the electrochemical reaction and physical and spectroscopic data for (±)-2, meso-2, E-5, and E-8. | ||
Format: PDF | Size: 195.2 KB | Download |
Cite the Following Article
Cathodic reductive coupling of methyl cinnamate on boron-doped diamond electrodes and synthesis of new neolignan-type products
Taiki Kojima, Rika Obata, Tsuyoshi Saito, Yasuaki Einaga and Shigeru Nishiyama
Beilstein J. Org. Chem. 2015, 11, 200–203.
https://doi.org/10.3762/bjoc.11.21
How to Cite
Kojima, T.; Obata, R.; Saito, T.; Einaga, Y.; Nishiyama, S. Beilstein J. Org. Chem. 2015, 11, 200–203. doi:10.3762/bjoc.11.21
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Si, D.; Teng, X.; Xiong, B.; Chen, L.; Shi, J. Electrocatalytic functional group conversion-based carbon resource upgrading. Chemical science 2024, 15, 6269–6284. doi:10.1039/d4sc00175c
- Halder, A.; Mahanty, K.; Maiti, D.; De Sarkar, S. Recent Advances in Electrochemical Reductive Transformation of C−C and C−O Multiple Bonds. Israel Journal of Chemistry 2023, 64. doi:10.1002/ijch.202300102
- Miyabe, H.; Yoshioka, E.; Takahashi, H.; Kubo, A.; Ohno, M.; Watanabe, F.; Shiono, R.; Miyazaki, Y. N-Heterocyclic Carbene Catalyzed Cross Dehydrogenative Coupling of Aldehydes with Methanol: Combined Use of Eosin Y and Hexachloroethane. Synthesis 2022, 54, 5520–5528. doi:10.1055/a-1918-4406
- Sotelo-Gil, J.; Cuevas-Yañez, E.; Frontana-Uribe, B. A. Recent advances on boron doped diamond (BDD) electrode as cathode in organic and inorganic preparative electrotransformations. Current Opinion in Electrochemistry 2022, 34, 101004. doi:10.1016/j.coelec.2022.101004
- Ganiyu, S. O.; dos Santos, E. V.; Martínez-Huitle, C. A.; Waldvogel, S. R. Opportunities and challenges of thin-film boron-doped diamond electrochemistry for valuable resources recovery from waste: Organic, inorganic, and volatile product electrosynthesis. Current Opinion in Electrochemistry 2022, 32, 100903. doi:10.1016/j.coelec.2021.100903
- Yamamoto, T.; Saitoh, T. Electro-Organic Synthesis. Diamond Electrodes; Springer Singapore, 2022; pp 177–195. doi:10.1007/978-981-16-7834-9_11
- Chicas-Baños, D. F.; Frontana-Uribe, B. A. Electrochemical Generation and Use in Organic Synthesis of C-, O-, and N-Centered Radicals. Chemical record (New York, N.Y.) 2021, 21, 2538–2573. doi:10.1002/tcr.202100056
- Handschuh-Wang, S.; Wang, T.; Tang, Y. Ultrathin Diamond Nanofilms—Development, Challenges, and Applications. Small (Weinheim an der Bergstrasse, Germany) 2021, 17, 2007529. doi:10.1002/smll.202007529
- Francke, R.; Gonzalez, L.; Little, R. D.; Moeller, K. D. Surface and Interface Science; Wiley, 2020; pp 827–891. doi:10.1002/9783527822508.ch79
- Martínez-Huitle, C. A.; Waldvogel, S. R. Trends of Organic Electrosynthesis by Using Boron-Doped Diamond Electrodes. Topics in Applied Physics; Springer International Publishing, 2019; pp 173–197. doi:10.1007/978-3-030-12469-4_6
- Nakahara, K.; Naba, K.; Saitoh, T.; Sugai, T.; Obata, R.; Nishiyama, S.; Einaga, Y.; Yamamoto, T. Electrochemical Pinacol Coupling of Acetophenone Using Boron‐Doped Diamond Electrode. ChemElectroChem 2019, 6, 4153–4157. doi:10.1002/celc.201900202
- Lips, S.; Waldvogel, S. R. Use of Boron‐Doped Diamond Electrodes in Electro‐Organic Synthesis. ChemElectroChem 2019, 6, 1649–1660. doi:10.1002/celc.201801620
- Yang, N.; Yu, S.; Macpherson, J. V.; Einaga, Y.; Zhao, H.; Zhao, G.; Swain, G. M.; Jiang, X. Conductive diamond: synthesis, properties, and electrochemical applications. Chemical Society reviews 2019, 48, 157–204. doi:10.1039/c7cs00757d
- Zhang, Y.; Sugai, T.; Yamamoto, T.; Yamamoto, N.; Kutsumura, N.; Einaga, Y.; Nishiyama, S.; Saitoh, T.; Nagase, H. Oxidative Cleavage of the Acyl‐Carbon Bond in Phenylacetone with Electrogenerated Superoxide Anions. ChemElectroChem 2018, 6, 4194–4198. doi:10.1002/celc.201801308
- Einaga, Y. Development of electrochemical applications of boron-doped diamond electrodes. Bulletin of the Chemical Society of Japan 2018, 91, 1752–1762. doi:10.1246/bcsj.20180268
- Matsumoto, K.; Yoshida, J.; Miyamoto, Y.; Mitani, N.; Yanagi, R.; Kashimura, S.; Suga, S. Synthesis of oxazolines from vv-allylamides using an electrochemically generated ArS(ArSSAr)+ pool. HETEROCYCLES 2018, 96, 1373–1382. doi:10.3987/com-18-13942
- Gütz, C.; Grimaudo, V.; Holtkamp, M.; Hartmer, M. F.; Werra, J.; Frensemeier, L. M.; Kehl, A.; Karst, U.; Broekmann, P.; Waldvogel, S. R. Leaded Bronze: An Innovative Lead Substitute for Cathodic Electrosynthesis. ChemElectroChem 2017, 5, 247–252. doi:10.1002/celc.201701061
- Yan, M.; Kawamata, Y.; Baran, P. S. Synthetic Organic Electrochemical Methods Since 2000: On the Verge of a Renaissance. Chemical reviews 2017, 117, 13230–13319. doi:10.1021/acs.chemrev.7b00397
- Navarro, M. Recent advances in experimental procedures for electroorganic synthesis. Current Opinion in Electrochemistry 2017, 2, 43–52. doi:10.1016/j.coelec.2017.03.004
- Ivandini, T. A.; Einaga, Y. Polycrystalline boron-doped diamond electrodes for electrocatalytic and electrosynthetic applications. Chemical communications (Cambridge, England) 2017, 53, 1338–1347. doi:10.1039/c6cc08681k