Cite the Following Article
Cholesterol lowering effects of mono-lactose-appended β-cyclodextrin in Niemann–Pick type C disease-like HepG2 cells
Keiichi Motoyama, Yumi Hirai, Rena Nishiyama, Yuki Maeda, Taishi Higashi, Yoichi Ishitsuka, Yuki Kondo, Tetsumi Irie, Takumi Era and Hidetoshi Arima
Beilstein J. Org. Chem. 2015, 11, 2079–2086.
https://doi.org/10.3762/bjoc.11.224
How to Cite
Motoyama, K.; Hirai, Y.; Nishiyama, R.; Maeda, Y.; Higashi, T.; Ishitsuka, Y.; Kondo, Y.; Irie, T.; Era, T.; Arima, H. Beilstein J. Org. Chem. 2015, 11, 2079–2086. doi:10.3762/bjoc.11.224
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Wu, J.; Li, J.; Shao, W.; Hu, Y.; Chen, H.; Chen, Y.; Chen, Y.; Liu, Q.; Ao, M. Cyclodextrins as therapeutic drugs for treating lipid metabolism disorders. Obesity reviews : an official journal of the International Association for the Study of Obesity 2024, 25, e13687. doi:10.1111/obr.13687
- Ohashi, M.; Tamura, A.; Yui, N. Exploring Receptor Binding Affinities and Hepatic Cell Association of N-Acetyl-d-Galactosamine-Modified β-Cyclodextrin-Based Polyrotaxanes for Liver-Targeted Therapies. Biomacromolecules 2023, 24, 2327–2341. doi:10.1021/acs.biomac.3c00194
- Ishitsuka, Y.; Irie, T.; Matsuo, M. Cyclodextrins applied to the treatment of lysosomal storage disorders. Advanced drug delivery reviews 2022, 191, 114617. doi:10.1016/j.addr.2022.114617
- Nishida, T.; Yokoyama, R.; Kubohira, Y.; Maeda, Y.; Takeo, T.; Nakagata, N.; Takagi, H.; Ishikura, K.; Yanagihara, K.; Misumi, S.; Kishimoto, N.; Ishitsuka, Y.; Kondo, Y.; Irie, T.; Soga, M.; Era, T.; Onodera, R.; Higashi, T.; Motoyama, K. Lactose-Appended Hydroxypropyl-β-Cyclodextrin Lowers Cholesterol Accumulation and Alleviates Motor Dysfunction in Niemann-Pick Type C Disease Model Mice. ACS applied bio materials 2022, 5, 2377–2388. doi:10.1021/acsabm.2c00233
- Zakany, F.; Kovacs, T.; Szente, L.; Varga, Z. Cyclodextrins as promising therapeutics against cholesterol overload. Cholesterol; Elsevier, 2022; pp 927–967. doi:10.1016/b978-0-323-85857-1.00028-6
- Ishikura, K.; Yanagihara, K.; Takagi, H. Synthesis of branched cyclodextrins using activated carbon as a catalyst. Journal of Inclusion Phenomena and Macrocyclic Chemistry 2021, 101, 91–99. doi:10.1007/s10847-021-01089-z
- Matencio, A.; Hoti, G.; Monfared, Y. K.; Rezayat, A.; Pedrazzo, A. R.; Caldera, F.; Trotta, F. Cyclodextrin Monomers and Polymers for Drug Activity Enhancement. Polymers 2021, 13, 1684–1701. doi:10.3390/polym13111684
- Harvey, D. ANALYSIS OF CARBOHYDRATES AND GLYCOCONJUGATES BY MATRIX-ASSISTED LASER DESORPTION/IONIZATION MASS SPECTROMETRY: AN UPDATE FOR 2015-2016. Mass spectrometry reviews 2021, 40, 408–565. doi:10.1002/mas.21651
- Matencio, A.; Caldera, F.; Cecone, C.; López-Nicolás, J. M.; Trotta, F. Cyclic Oligosaccharides as Active Drugs, an Updated Review. Pharmaceuticals (Basel, Switzerland) 2020, 13, 281. doi:10.3390/ph13100281
- Yokoyama, R.; Taharabaru, T.; Nishida, T.; Ohno, Y.; Maeda, Y.; Sato, M.; Ishikura, K.; Yanagihara, K.; Takagi, H.; Nakamura, T.; Ito, S.; Ohtsuki, S.; Arima, H.; Onodera, R.; Higashi, T.; Motoyama, K. Lactose-appended β-cyclodextrin as an effective nanocarrier for brain delivery. Journal of controlled release : official journal of the Controlled Release Society 2020, 328, 722–735. doi:10.1016/j.jconrel.2020.09.043
- Matencio, A.; Navarro-Orcajada, S.; González-Ramón, A.; García-Carmona, F.; López-Nicolás, J. M. Recent advances in the treatment of Niemann pick disease type C: A mini-review. International journal of pharmaceutics 2020, 584, 119440. doi:10.1016/j.ijpharm.2020.119440
- Zagami, R.; Romeo, A.; Mazzaglia, A.
- Maeda, Y.; Motoyama, K.; Nishiyama, R.; Higashi, T.; Onodera, R.; Nakamura, H.; Takeo, T.; Nakagata, N.; Yamada, Y.; Ishitsuka, Y.; Kondo, Y.; Irie, T.; Era, T.; Arima, H. In vivo Efficacy and Safety Evaluation of Lactosyl-β-cyclodextrin as a Therapeutic Agent for Hepatomegaly in Niemann-Pick Type C Disease. Nanomaterials (Basel, Switzerland) 2019, 9, 802. doi:10.3390/nano9050802
- Higashi, T. Cyclodextrin-Based Molecular Accessories for Drug Discovery and Drug Delivery. Chemical & pharmaceutical bulletin 2019, 67, 289–298. doi:10.1248/cpb.c18-00735
- Crini, G.; Fourmentin, S.; Fenyvesi, É.; Torri, G.; Fourmentin, M.; Morin-Crini, N. Cyclodextrins, from molecules to applications. Environmental Chemistry Letters 2018, 16, 1361–1375. doi:10.1007/s10311-018-0763-2
- Crini, G.; Fourmentin, S.; Fenyvesi, É.; Torri, G.; Fourmentin, M.; Morin-Crini, N. Fundamentals and Applications of Cyclodextrins. Environmental Chemistry for a Sustainable World; Springer International Publishing, 2018; pp 1–55. doi:10.1007/978-3-319-76159-6_1
- Higashi, T.; Iohara, D.; Motoyama, K.; Arima, H. Supramolecular Pharmaceutical Sciences: A Novel Concept Combining Pharmaceutical Sciences and Supramolecular Chemistry with a Focus on Cyclodextrin-Based Supermolecules. Chemical & pharmaceutical bulletin 2018, 66, 207–216. doi:10.1248/cpb.c17-00765
- Tamura, A.; Ohashi, M.; Nishida, K.; Yui, N. Acid-Induced Intracellular Dissociation of β-Cyclodextrin-Threaded Polyrotaxanes Directed toward Attenuating Phototoxicity of Bisretinoids through Promoting Excretion. Molecular pharmaceutics 2017, 14, 4714–4724. doi:10.1021/acs.molpharmaceut.7b00859
- Motoyama, K.; Nishiyama, R.; Maeda, Y.; Higashi, T.; Ishitsuka, Y.; Kondo, Y.; Irie, T.; Era, T.; Arima, H. Synthesis of multi-lactose-appended β-cyclodextrin and its cholesterol-lowering effects in Niemann-Pick type C disease-like HepG2 cells. Beilstein journal of organic chemistry 2017, 13, 10–18. doi:10.3762/bjoc.13.2
- Arima, H.; Motoyama, K.; Higashi, T. Potential Use of Cyclodextrins as Drug Carriers and Active Pharmaceutical Ingredients. Chemical & pharmaceutical bulletin 2017, 65, 341–348. doi:10.1248/cpb.c16-00779