Synthesis of α,β-unsaturated esters via a chemo-enzymatic chain elongation approach by combining carboxylic acid reduction and Wittig reaction

Yitao Duan, Peiyuan Yao, Yuncheng Du, Jinhui Feng, Qiaqing Wu and Dunming Zhu
Beilstein J. Org. Chem. 2015, 11, 2245–2251. https://doi.org/10.3762/bjoc.11.243

Supporting Information

Supporting Information File 1: Materials, bacterial screening, analytical procedures, NMR data and spectra of 1d, 2d, 3d, 4d, 5d, 10d, 12d and 17d.
Format: PDF Size: 2.0 MB Download

Cite the Following Article

Synthesis of α,β-unsaturated esters via a chemo-enzymatic chain elongation approach by combining carboxylic acid reduction and Wittig reaction
Yitao Duan, Peiyuan Yao, Yuncheng Du, Jinhui Feng, Qiaqing Wu and Dunming Zhu
Beilstein J. Org. Chem. 2015, 11, 2245–2251. https://doi.org/10.3762/bjoc.11.243

How to Cite

Duan, Y.; Yao, P.; Du, Y.; Feng, J.; Wu, Q.; Zhu, D. Beilstein J. Org. Chem. 2015, 11, 2245–2251. doi:10.3762/bjoc.11.243

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Winkler, M.; Breuer, H. G.; Schober, L. Aldehyde Reductase Activity of Carboxylic Acid Reductases. Chembiochem : a European journal of chemical biology 2024, 25, e202400121. doi:10.1002/cbic.202400121
  • Santner, P.; Chanquia, S. N.; Petrovai, N.; Benfeldt, F. V.; Kara, S.; Eser, B. E. Biocatalytic conversion of fatty acids into drop-in biofuels: Towards sustainable energy sources. EFB Bioeconomy Journal 2023, 3, 100049. doi:10.1016/j.bioeco.2023.100049
  • Winkler, M.; Ling, J. G. Biocatalytic Carboxylate Reduction – Recent Advances and New Enzymes. ChemCatChem 2022, 14. doi:10.1002/cctc.202200441
  • Pongpamorn, P.; Kiattisewee, C.; Kittipanukul, N.; Jaroensuk, J.; Trisrivirat, D.; Maenpuen, S.; Chaiyen, P. Carboxylic Acid Reductase Can Catalyze Ester Synthesis in Aqueous Environments. Angewandte Chemie 2021, 133, 5813–5817. doi:10.1002/ange.202013962
  • Pongpamorn, P.; Kiattisewee, C.; Kittipanukul, N.; Jaroensuk, J.; Trisrivirat, D.; Maenpuen, S.; Chaiyen, P. Carboxylic Acid Reductase Can Catalyze Ester Synthesis in Aqueous Environments. Angewandte Chemie (International ed. in English) 2021, 60, 5749–5753. doi:10.1002/anie.202013962
  • Hollmann, F.; Opperman, D. J.; Paul, C. E. Biocatalytic Reduction Reactions from a Chemist's Perspective. Angewandte Chemie (International ed. in English) 2020, 60, 5644–5665. doi:10.1002/anie.202001876
  • Hollmann, F.; Opperman, D. J.; Paul, C. E. Biokatalytische Reduktionen aus der Sicht eines Chemikers. Angewandte Chemie 2020, 133, 5706–5727. doi:10.1002/ange.202001876
  • de Gonzalo, G.; Lavandera, I. Homogeneous Hydrogenation with Non‐Precious Catalysts; Wiley, 2019; pp 227–259. doi:10.1002/9783527814237.ch8
  • Butler, N.; Kunjapur, A. M. Carboxylic acid reductases in metabolic engineering. Journal of biotechnology 2019, 307, 1–14. doi:10.1016/j.jbiotec.2019.10.002
  • Liu, N.; Feng, J.; Zhang, R.; Chen, X.; Xuemei, L.; Yao, P.; Wu, Q.; Ma, Y.; Zhu, D. Efficient microbial synthesis of key steroidal intermediates from bio-renewable phytosterols by genetically modified Mycobacterium fortuitum strains. Green Chemistry 2019, 21, 4076–4083. doi:10.1039/c9gc01267b
  • Stolterfoht, H.; Steinkellner, G.; Schwendenwein, D.; Pavkov-Keller, T.; Gruber, K.; Winkler, M. Identification of Key Residues for Enzymatic Carboxylate Reduction. Frontiers in microbiology 2018, 9, 250. doi:10.3389/fmicb.2018.00250
  • Merza, F.; Taha, A.; Thiemann, T. Tandem-, Domino- and One-Pot Reactions Involving Wittig- and Horner-Wadsworth-Emmons Olefination. Alkenes; InTech, 2018. doi:10.5772/intechopen.70364
  • Klumbys, E. Ph.D. Thesis, Jan 1, 2018.
  • Qu, G.; Guo, J.; Yang, D.; Sun, Z. Biocatalysis of carboxylic acid reductases: phylogenesis, catalytic mechanism and potential applications. Green Chemistry 2018, 20, 777–792. doi:10.1039/c7gc03046k
  • Winkler, M. Carboxylic acid reductase enzymes (CARs). Current opinion in chemical biology 2017, 43, 23–29. doi:10.1016/j.cbpa.2017.10.006
  • Gahloth, D.; Dunstan, M. S.; Quaglia, D.; Klumbys, E.; Lockhart-Cairns, M. P.; Hill, A.; Derrington, S. R.; Scrutton, N. S.; Turner, N. J.; Leys, D. Structures of carboxylic acid reductase reveal domain dynamics underlying catalysis. Nature chemical biology 2017, 13, 975–981. doi:10.1038/nchembio.2434
  • Stolterfoht, H.; Schwendenwein, D.; Sensen, C. W.; Rudroff, F.; Winkler, M. Four distinct types of E.C. 1.2.1.30 enzymes can catalyze the reduction of carboxylic acids to aldehydes. Journal of biotechnology 2017, 257, 222–232. doi:10.1016/j.jbiotec.2017.02.014
  • Schwendenwein, D.; Fiume, G.; Weber, H.; Rudroff, F.; Winkler, M. Selective Enzymatic Transformation to Aldehydes in vivo by Fungal Carboxylate Reductase from Neurospora crassa. Advanced synthesis & catalysis 2016, 358, 3414–3421. doi:10.1002/adsc.201600914
  • Duan, Y.; Yao, P.; Du, Y.; Feng, J.; Wu, Q.; Zhu, D. Synthesis of α,β‐Unsaturated Esters via a Chemo‐Enzymatic Chain Elongation Approach by Combining Carboxylic Acid Reduction and Wittig Reaction. ChemInform 2016, 47. doi:10.1002/chin.201606094
  • Zhu, D.; Hua, L. Specialty Enzymes for Chemical Needs. Green Chemistry and Sustainable Technology; Springer Berlin Heidelberg, 2016; pp 61–97. doi:10.1007/978-3-662-53704-6_4
Other Beilstein-Institut Open Science Activities