Supporting Information
Materials and methods, detailed synthetic procedures, and analytical and spectroscopic data of all compounds (2, 4–15) are provided.
Supporting Information File 1: Experimental part. | ||
Format: PDF | Size: 397.4 KB | Download |
Cite the Following Article
Syntheses of 2-substituted 1-amino-4-bromoanthraquinones (bromaminic acid analogues) – precursors for dyes and drugs
Enas M. Malik, Younis Baqi and Christa E. Müller
Beilstein J. Org. Chem. 2015, 11, 2326–2333.
https://doi.org/10.3762/bjoc.11.253
How to Cite
Malik, E. M.; Baqi, Y.; Müller, C. E. Beilstein J. Org. Chem. 2015, 11, 2326–2333. doi:10.3762/bjoc.11.253
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Litvinova, V. A.; Tikhomirov, A. S.; Shchekotikhin, A. E. Methods for functionalization of anthraquinones. Russian Chemical Reviews 2024, 93, RCR5141. doi:10.59761/rcr5141
- Tariq, B.; Mansha, A.; Asim, S.; Noreen, S. Sensory detection of selective substituted acyl chloride and nitrobenzene sulfonyl chloride by interaction with 1-amino-4-hydroxy-9,10-anthraquinone using spectrophotometry and cyclic voltammetry. Chemical Papers 2024, 78, 6685–6708. doi:10.1007/s11696-024-03566-4
- Tariq, B.; Mansha, A.; Asim, S.; Noreen, S. Sensory detection of selective substituted acyl chloride and nitrobenzene-sulfonyl chloride by interaction with 1-amino-4-hydroxy-9,10-anthraquinone using spectrophotometry and cyclic voltammetry. Chemical Papers 2024, 78, 6431–6455. doi:10.1007/s11696-024-03546-8
- Tariq, B.; Mansha, A.; Asim, S.; Kausar, A. Effect of Substituents on Solubility, Medicinal, Absorption, Emission and Cationic/Anionic Detection Properties of Anthraquinone Derivatives. Journal of fluorescence 2023, 34, 1527–1544. doi:10.1007/s10895-023-03410-0
- Preet, G.; Astakala, R. V.; Gomez-Banderas, J.; Rajakulendran, J. E.; Hasan, A. H.; Ebel, R.; Jaspars, M. Virtual Screening of a Library of Naturally Occurring Anthraquinones for Potential Anti-Fouling Agents. Molecules (Basel, Switzerland) 2023, 28, 995. doi:10.3390/molecules28030995
- NİGUSSİE, G.; TOLA, M.; FANTA, T. Medicinal uses, chemical constituents and biological activities of Rumex abyssinicus: A Comprehensive review. International Journal of Secondary Metabolite 2022, 9, 440–456. doi:10.21448/ijsm.1095643
- Preet, G.; Gomez-Banderas, J.; Ebel, R.; Jaspars, M. A structure-activity relationship analysis of anthraquinones with antifouling activity against marine biofilm-forming bacteria. Frontiers in Natural Products 2022, 1. doi:10.3389/fntpr.2022.990822
- Malik, M. S.; Alsantali, R. I.; Jassas, R. S.; Alsimaree, A. A.; Syed, R.; Alsharif, M. A.; Kalpana, K.; Morad, M.; Althagafi, I.; Ahmed, S. A. Journey of anthraquinones as anticancer agents – a systematic review of recent literature. RSC advances 2021, 11, 35806–35827. doi:10.1039/d1ra05686g
- Shupeniuk, V. I.; Amaladoss, N.; Taras, T. N.; Sabadakh, O. P.; Matkivskyi, N. P. Synthesis and In Silico Study of 4-Substituted 1-Aminoanthraquinones. Russian Journal of Organic Chemistry 2021, 57, 582–588. doi:10.1134/s1070428021040126
- Taras, T. M.; Luchkevich, E. R.; Shupeniuk, V. I.; Sabadakh, O. P.; Bolibrukh, L. D.; Zhurakhivska, L. R. Synthesis and predicted antiviral activity of 4-substituted 9,10-anthraquinone derivatives. Chemistry, Technology and Application of Substances 2020, 3, 67–72. doi:10.23939/ctas2020.02.067
- Shupeniuk, V. I.; Taras, T.; Sabadakh, O.; Luchkevich, E.; Kornii, Y. Synthesis some 4-substituted 9,10-anthraquinones. French-Ukrainian Journal of Chemistry 2020, 8, 58–65. doi:10.17721/fujcv8i1p58-65
- Sawano, T.; Toyoshima, Y.; Takeuchi, R. Synthesis of Anthraquinones by Iridium-Catalyzed [2 + 2 + 2] Cycloaddition of a 1,2-Bis(propiolyl)benzene Derivative with Alkynes. Inorganics 2019, 7, 138. doi:10.3390/inorganics7110138
- Ziarani, G. M.; Moradi, R.; Lashgari, N.; Kruger, H. G. Anthraquinone Dyes. Metal-Free Synthetic Organic Dyes; Elsevier, 2018; pp 9–17. doi:10.1016/b978-0-12-815647-6.00002-9
- Rafehi, M.; Malik, E. M.; Neumann, A.; Abdelrahman, A.; Hanck, T.; Namasivayam, V.; Müller, C. E.; Baqi, Y. Development of Potent and Selective Antagonists for the UTP-Activated P2Y4 Receptor. Journal of medicinal chemistry 2017, 60, 3020–3038. doi:10.1021/acs.jmedchem.7b00030
- Ostrovskii, V. A.; Popova, E. A.; Trifonov, R. E. Advances in heterocyclic chemistry. Advances in Heterocyclic Chemistry 2017, 123, 2–62. doi:10.1016/bs.aihch.2016.12.003
- Malik, E. M.; Rashed, M.; Wingen, L. M.; Baqi, Y.; Müller, C. E. Ullmann reactions of 1-amino-4-bromoanthraquinones bearing various 2-substituents furnishing novel dyes. Dyes and Pigments 2016, 131, 33–40. doi:10.1016/j.dyepig.2016.03.023
- Fiene, A.; Baqi, Y.; Malik, E. M.; Newton, P.; Li, W.; Lee, S. Y.; Hartland, E. L.; Müller, C. E. Inhibitors for the bacterial ectonucleotidase Lp1NTPDase from Legionella pneumophila. Bioorganic & medicinal chemistry 2016, 24, 4363–4371. doi:10.1016/j.bmc.2016.07.027
- Baqi, Y. Anthraquinones as a privileged scaffold in drug discovery targeting nucleotide-binding proteins. Drug discovery today 2016, 21, 1571–1577. doi:10.1016/j.drudis.2016.06.027
- Malik, E. M.; Müller, C. E. Anthraquinones As Pharmacological Tools and Drugs. Medicinal research reviews 2016, 36, 705–748. doi:10.1002/med.21391
- Malik, E. M.; Baqi, Y.; Mueller, C. E. Syntheses of 2‐Substituted 1‐Amino‐4‐bromoanthraquinones (Bromaminic Acid Analogues) — Precursors for Dyes and Drugs. ChemInform 2016, 47. doi:10.1002/chin.201607116