Cite the Following Article
Smart molecules for imaging, sensing and health (SMITH)
Bradley D. Smith
Beilstein J. Org. Chem. 2015, 11, 2540–2548.
https://doi.org/10.3762/bjoc.11.274
How to Cite
Smith, B. D. Beilstein J. Org. Chem. 2015, 11, 2540–2548. doi:10.3762/bjoc.11.274
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Bhat, M. A.; Anis, I.; Almarhoon, Z. M.; Bhat, S. A.; Jan, M.; Dar, M. A.; Butcher, R. J. Structure-directing interactions in the crystals of tertiary butyl carbazate based imines: A combined experimental and theoretical investigation. Journal of Molecular Structure 2024, 1305, 137724. doi:10.1016/j.molstruc.2024.137724
- Ratto, A.; Honek, J. F. Oxocarbon Acids and their Derivatives in Biological and Medicinal Chemistry. Current medicinal chemistry 2024, 31, 1172–1213. doi:10.2174/0929867330666230313141452
- Nandi, M.; Bej, S.; Jana, T.; Ghosh, P. From construction to application of a new generation of interlocked molecules composed of heteroditopic wheels. Chemical communications (Cambridge, England) 2023, 59, 14776–14790. doi:10.1039/d3cc03778a
- Rajapaksha, H.; Augustine, L. J.; Mason, S. E.; Forbes, T. Z. Guiding Principles for the Rational Design of Hybrid Materials: Use of DFT Methodology for Evaluating Non-Covalent Interactions in a Uranyl Tetrahalide Model System. Angewandte Chemie (International ed. in English) 2023, 62, e202305073. doi:10.1002/anie.202305073
- Rajapaksha, H.; Augustine, L. J.; Mason, S. E.; Forbes, T. Z. Guiding Principles for the Rational Design of Hybrid Materials: Use of DFT Methodology for Evaluating Non‐Covalent Interactions in a Uranyl Tetrahalide Model System. Angewandte Chemie 2023, 135. doi:10.1002/ange.202305073
- Tharmalingam, B.; Mathivanan, M.; Anitha, O.; Kaminsky, W.; Murugesapandian, B. Nitrogen rich triaminoguanidine-pyrrole conjugate as supramolecular synthon for the construction of charge-assisted hydrogen bonded network with various carboxylic acids. Journal of Solid State Chemistry 2022, 305, 122637. doi:10.1016/j.jssc.2021.122637
- Valle-Sánchez, M.; Contreras-Celedón, C.; Ochoa-Terán, A.; Chacón-García, L. Cooperative Recognition of Ni2+ Triggered by Fluoride Ions in Naturally Occurring α-Hydroxyquinone Derivatives. ACS omega 2021, 6, 16419–16427. doi:10.1021/acsomega.1c01420
- Williams, G. T.; Haynes, C. J. E.; Fares, M.; Caltagirone, C.; Hiscock, J. R.; Gale, P. A. Advances in applied supramolecular technologies. Chemical Society reviews 2021, 50, 2737–2763. doi:10.1039/d0cs00948b
- Ahmad, I.; Ganie, A. A.; Dar, A. A. Achievement of enhanced solubility and improved optics in molecular complexes based on a sulfonate–pyridinium supramolecular synthon. CrystEngComm 2020, 22, 3933–3942. doi:10.1039/d0ce00346h
- Baruah, S.; Aier, M.; Puzari, A. Fluorescent probe sensor based on (R)‐(−)‐4‐phenyl‐2‐oxazolidone for effective detection of divalent cations. Luminescence : the journal of biological and chemical luminescence 2020, 35, 1206–1216. doi:10.1002/bio.3830
- de Maria Perez-Martinez, J.; Morales, F.; Martinez-Cuezva, A.; Alajarin, M.; Berna, J. Synthesis of an Adamantane-Based Tetralactam and Its Association with Dicarboxamides. In The 23rd International Electronic Conference on Synthetic Organic Chemistry, MDPI, 2019; pp 65 ff. doi:10.3390/ecsoc-23-06511
- Ganie, A. A.; Vishnoi, P.; Dar, A. A. Utility of Bis-4-pyridines as Supramolecular Linkers for 5-Sulfosalicylic Acid Centers: Structural and Optical Investigations. Crystal Growth & Design 2019, 19, 2289–2297. doi:10.1021/acs.cgd.8b01914
- Sun, T.; Zhang, G.-P.; Wang, Q.; Guo, Z.; Chen, Q.; Chen, X.; Lu, Y.; Zhang, Y.; Zhang, Y.; Guo, Q.; Gao, X.; Cheng, Y.; Jiang, C. Pre-blocked molecular shuttle as an in-situ real-time theranostics. Biomaterials 2019, 204, 46–58. doi:10.1016/j.biomaterials.2019.02.019
- Liu, W.; Johnson, A.; Smith, B. D. Guest Back-Folding: A Molecular Design Strategy That Produces a Deep-Red Fluorescent Host/Guest Pair with Picomolar Affinity in Water. Journal of the American Chemical Society 2018, 140, 3361–3370. doi:10.1021/jacs.7b12991
- Shaw, S. K.; Liu, W.; Brennan, S. P.; de Lourdes Betancourt-Mendiola, M.; Smith, B. D. Non-Covalent Assembly Method that Simultaneously Endows a Liposome Surface with Targeting Ligands, Protective PEG Chains, and Deep-Red Fluorescence Reporter Groups. Chemistry (Weinheim an der Bergstrasse, Germany) 2017, 23, 12646–12654. doi:10.1002/chem.201702649
- Kolesnichenko, I. V.; Anslyn, E. V. Practical applications of supramolecular chemistry. Chemical Society reviews 2017, 46, 2385–2390. doi:10.1039/c7cs00078b
- Liu, W.; Gómez-Durán, C. F. A.; Smith, B. D. Fluorescent Neuraminidase Assay Based on Supramolecular Dye Capture After Enzymatic Cleavage. Journal of the American Chemical Society 2017, 139, 6390–6395. doi:10.1021/jacs.7b01628
- Roland, F. M.; Peck, E. M.; Rice, D. R.; Smith, B. D. Preassembled Fluorescent Multivalent Probes for the Imaging of Anionic Membranes. Bioconjugate chemistry 2017, 28, 1093–1101. doi:10.1021/acs.bioconjchem.7b00012
- Peck, E. M.; Battles, P. M.; Rice, D. R.; Roland, F. M.; Norquest, K. A.; Smith, B. D. Pre-Assembly of Near-Infrared Fluorescent Multivalent Molecular Probes for Biological Imaging. Bioconjugate chemistry 2016, 27, 1400–1410. doi:10.1021/acs.bioconjchem.6b00173