Highly selective generation of vanillin by anodic degradation of lignin: a combined approach of electrochemistry and product isolation by adsorption

Dominik Schmitt, Carolin Regenbrecht, Marius Hartmer, Florian Stecker and Siegfried R. Waldvogel
Beilstein J. Org. Chem. 2015, 11, 473–480. https://doi.org/10.3762/bjoc.11.53

Supporting Information

Supporting Information File 1: Information about materials.
Format: PDF Size: 219.9 KB Download
Supporting Information File 2: Experimental information.
Format: PDF Size: 617.0 KB Download

Cite the Following Article

Highly selective generation of vanillin by anodic degradation of lignin: a combined approach of electrochemistry and product isolation by adsorption
Dominik Schmitt, Carolin Regenbrecht, Marius Hartmer, Florian Stecker and Siegfried R. Waldvogel
Beilstein J. Org. Chem. 2015, 11, 473–480. https://doi.org/10.3762/bjoc.11.53

How to Cite

Schmitt, D.; Regenbrecht, C.; Hartmer, M.; Stecker, F.; Waldvogel, S. R. Beilstein J. Org. Chem. 2015, 11, 473–480. doi:10.3762/bjoc.11.53

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Mohazzab, B. F.; Torabi, K.; Gao, D. Design of nanostructured 2D (photo-)electrocatalysts for biomass valorization coupled with H2 production. Sustainable Energy & Fuels 2024, 8, 5620–5637. doi:10.1039/d4se01034e
  • Ying, Z.; Sun, H.; Cao, J.; Zheng, X.; Dou, B.; Cui, G. Lignin oxidation reaction kinetics and its conversion into high-value chemicals over self-prepared electrode during lignin-assisted water electrolysis for hydrogen production. Renewable Energy 2024, 237, 121746. doi:10.1016/j.renene.2024.121746
  • Aslam, S.; Rani, S.; Lal, K.; Ahmed, N. doi:10.1002/9783527846849.ch15
  • Poornima, S.; Manikandan, S.; Prakash, R.; Deena, S. R.; Subbaiya, R.; Karmegam, N.; Kim, W.; Govarthanan, M. Biofuel and biochemical production through biomass transformation using advanced thermochemical and biochemical processes – A review. Fuel 2024, 372, 132204. doi:10.1016/j.fuel.2024.132204
  • Lindenbeck, L. M.; Barra, V. C.; Beele, B. B.; Rodrigues, B. V. M.; Slabon, A. Revisiting the Electrocatalyst Role on Lignin Depolymerization. Advanced Energy and Sustainability Research 2024. doi:10.1002/aesr.202400130
  • Moeller, F.; Klein, J.; Waldvogel, S. R. Selective Degradation of Technically Relevant Lignin to Vanillic Acid and Protocatechuic Acid. ChemSusChem 2024, 17, e202400759. doi:10.1002/cssc.202400759
  • Zhang, W.; Killian, L.; Thevenon, A. Electrochemical recycling of polymeric materials. Chemical science 2024, 15, 8606–8624. doi:10.1039/d4sc01754d
  • Borsella, E.; Colucci, P.; Lembo, G.; Lange, H. doi:10.1002/9783527839865.ch4
  • Subbotina, E.; Stahl, S. S.; Anastas, P.; Samec, J. S. doi:10.1002/9783527839865.ch9
  • Zhu, Q.; Garedew, M.; Song, B.; Li, Y.; Lam, J. C. doi:10.1002/9783527839865.ch11
  • Yang, M.; Li, L.; Shi, J.; Xia, H.; Xu, J. Electrocatalytic hydrogenation of lignin-derived compounds in heteropolyacid fluidized system. Biomass Conversion and Biorefinery 2024. doi:10.1007/s13399-024-05773-1
  • Qi, Y.; Guo, H.; Li, J.; Ma, L.; Xu, Y.; Liu, H.; Wang, C.; Zhang, Z. Recent advances in the electrocatalytic oxidative upgrading of lignocellulosic biomass. ChemPhysMater 2024, 3, 157–186. doi:10.1016/j.chphma.2024.02.001
  • Dourado, A. H.; Santos, M.; Curvelo, A. A.; Varela, H. CuO as (electro)catalyst for lignin valorization. Applied Catalysis A: General 2024, 671, 119583. doi:10.1016/j.apcata.2024.119583
  • Oehl, E. K.; Lenhard, M. S.; Waldvogel, S. R. Tools of Green Synthesis: Electrochemistry. Reference Module in Chemistry, Molecular Sciences and Chemical Engineering; Elsevier, 2024. doi:10.1016/b978-0-443-15742-4.00108-3
  • Gao, D.; Ouyang, D.; Zhao, X. Controllable oxidative depolymerization of lignin to produce aromatic aldehydes and generate electricity under mild conditions with direct biomass fuel cells as flexible reactors. Chemical Engineering Journal 2024, 479, 147874. doi:10.1016/j.cej.2023.147874
  • Brix, A. C.; Krysiak, O. A.; Cechanaviciutè, I. A.; Bjelovučić, G.; Banko, L.; Ludwig, A.; Schuhmann, W. Oxidative Depolymerisation of Kraft Lignin: From Fabrication of Multi‐Metal‐Modified Electrodes For Vanillin Electrogeneration via Pulse Electrolysis To High‐Throughput Screening of Multi‐Metal Composites. ChemElectroChem 2023, 11. doi:10.1002/celc.202300483
  • Carkner, A.; Tageldin, I.; Han, J.; Seifitokaldani, A.; Kopyscinski, J. Impact of Temperature an Order of Magnitude Larger Than Electrical Potential in Lignin Electrolysis with Nickel. ChemSusChem 2023, 17, e202300795. doi:10.1002/cssc.202300795
  • Hu, R.; Zhan, J.; Zhao, Y.; Xu, X.; Luo, G.; Fan, J.; Clark, J. H.; Zhang, S. Bio-based platform chemicals synthesized from lignin biorefinery. Green Chemistry 2023, 25, 8970–9000. doi:10.1039/d3gc02927a
  • Sharma, A.; Sahu, S.; Sharma, S.; Singh, G.; Arya, S. K. Valorization of agro-industrial wastes into vanillin: A sustainable and bio-economical step towards the indigenous production of flavors. Biocatalysis and Agricultural Biotechnology 2023, 54, 102904. doi:10.1016/j.bcab.2023.102904
  • Bajpai, P. doi:10.1002/9781394191666.ch3

Patents

  • WALDVOGEL SIEGFRIED R; BEDNARZ ROLAND J -R; WEINELT FRANK; ROEMER ERNST. HIGH-THROUGHPUT ELECTROCHEMICAL OXIDATION PROCESS. WO 2024227776 A1, Nov 7, 2024.
  • Die Erfindernennung liegt noch nicht vor. HIGH-THROUGHPUT ELECTROCHEMICAL OXIDATION PROCESS. EP 4459011 A1, Nov 6, 2024.
  • WEINELT FRANK; BAUMANN FRANZ-ERICH; WALDVOGEL SIEGFRIED R; RAUEN ANNA-LISA. Method for electrochemically producing alkane dicarboxylic acids by means of a ring-opening oxidation using a doped Ni(O)OH foam electrode. US 11976373 B2, May 7, 2024.
  • WEINELT FRANK; BAUMANN FRANZ-ERICH; WALDVOGEL SIEGFRIED R; RAUEN ANNA-LISA. METHOD FOR ELECTROCHEMICALLY PRODUCING ALKANE DICARBOXYLIC ACIDS BY MEANS OF A RING-OPENING OXIDATION USING A DOPED NI(O)OH FOAM ELECTRODE. WO 2021249775 A1, Dec 16, 2021.
  • WEINELT FRANK; BAUMANN FRANZ-ERICH; WALDVOGEL SIEGFRIED R; RAUEN ANNA-LISA. METHOD FOR THE ELECTROCHEMICAL PREPARATION OF ALKANEDICARBOXYLIC ACIDS BY RING-OPENING OXIDATION USING A DOPED NI(O)OH FOAM ELECTRODE. EP 3922758 A1, Dec 15, 2021.
  • STAHL SHANNON S; RAFIEE MOHAMMAD. Polycarboxylated compounds and compositions containing same. US 11028235 B2, June 8, 2021.
  • STAHL SHANNON S; RAFIEE MOHAMMAD. Polycarboxylated compounds and compositions containing same. US 10336868 B2, July 2, 2019.
  • STAHL SHANNON S; RAFIEE MOHAMMAD. Nitroxyl-mediated oxidation of lignin and polycarboxylated products. US 9903028 B2, Feb 27, 2018.
Other Beilstein-Institut Open Science Activities