Automated solid-phase synthesis of oligosaccharides containing sialic acids

Chian-Hui Lai, Heung Sik Hahm, Chien-Fu Liang and Peter H. Seeberger
Beilstein J. Org. Chem. 2015, 11, 617–621. https://doi.org/10.3762/bjoc.11.69

Supporting Information

Supporting Information File 1: Experimental part.
Format: PDF Size: 6.7 MB Download

Cite the Following Article

Automated solid-phase synthesis of oligosaccharides containing sialic acids
Chian-Hui Lai, Heung Sik Hahm, Chien-Fu Liang and Peter H. Seeberger
Beilstein J. Org. Chem. 2015, 11, 617–621. https://doi.org/10.3762/bjoc.11.69

How to Cite

Lai, C.-H.; Hahm, H. S.; Liang, C.-F.; Seeberger, P. H. Beilstein J. Org. Chem. 2015, 11, 617–621. doi:10.3762/bjoc.11.69

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Szczepaniak, G.; Kapil, K.; Adida, S.; Kim, K.; Lin, T.-C.; Yilmaz, G.; Murata, H.; Matyjaszewski, K. Solid-Phase Synthesis of Well-Defined Multiblock Copolymers by Atom Transfer Radical Polymerization. Journal of the American Chemical Society 2024, 146, 22247–22256. doi:10.1021/jacs.4c03675
  • Khilji, S. K.; Goerdeler, F.; Frensemeier, K.; Warschkau, D.; Lühle, J.; Fandi, Z.; Schirmeister, F.; Chen, Z. A.; Turak, O.; Mallagaray, A.; Boerno, S.; Timmermann, B.; Rappsilber, J.; Seeberger, P. H.; Moscovitz, O. Generation of glycan-specific nanobodies. Cell chemical biology 2022, 29, 1353–1361.e6. doi:10.1016/j.chembiol.2022.05.007
  • Li, X.; Yang, Y. Automated Chemical Solid‐Phase Synthesis of Glycans. Chinese Journal of Chemistry 2022, 40, 1714–1728. doi:10.1002/cjoc.202200183
  • Zheng, J.; Xu, H.; Fang, J.; Zhang, X. Enzymatic and chemoenzymatic synthesis of human milk oligosaccharides and derivatives. Carbohydrate polymers 2022, 291, 119564. doi:10.1016/j.carbpol.2022.119564
  • Hebda, P.; Wiśniowska, L.; Szafrański, P. W.; Cegla, M. T. Multigram-scale enzymatic kinetic resolution of trans-2-azidocyclohexyl acetate and chiral reversed-phase HPLC analysis of trans-2-azidocyclohexanol. Chirality 2021, 34, 428–437. doi:10.1002/chir.23397
  • Downey, M.; Seeberger, P. H. Automated oligosaccharide synthesis : the past, present, and future. Comprehensive Glycoscience; Elsevier, 2021; pp 561–601. doi:10.1016/b978-0-12-819475-1.00106-1
  • Walsh, C.; Lane, J. A.; van Sinderen, D.; Hickey, R. M. Human milk oligosaccharides: Shaping the infant gut microbiota and supporting health. Journal of functional foods 2020, 72, 104074. doi:10.1016/j.jff.2020.104052
  • Salminen, S.; Stahl, B.; Vinderola, G.; Szajewska, H. Infant formula supplemented with biotics: Current knowledge and future perspectives. Nutrients 2020, 12, 1952. doi:10.3390/nu12071952
  • Fleischer, H.; Thurow, K. doi:10.1002/9783527822843.ch2
  • Pfrengle, F. CHAPTER 14:Solid-phase Glycan Synthesis. Synthetic Glycomes; The Royal Society of Chemistry, 2019; pp 331–355. doi:10.1039/9781788016575-00331
  • Guberman, M.; Seeberger, P. H. Automated Glycan Assembly: A Perspective. Journal of the American Chemical Society 2019, 141, 5581–5592. doi:10.1021/jacs.9b00638
  • Han, H. G.; Moon, H. W.; Jeon, Y. J. ISG15 in cancer: Beyond ubiquitin-like protein. Cancer letters 2018, 438, 52–62. doi:10.1016/j.canlet.2018.09.007
  • Wen, L.; Edmunds, G.; Gibbons, C.; Zhang, J.; Gadi, M. R.; Zhu, H.; Fang, J.; Liu, X.; Kong, Y.; Wang, P. G. Toward Automated Enzymatic Synthesis of Oligosaccharides. Chemical reviews 2018, 118, 8151–8187. doi:10.1021/acs.chemrev.8b00066
  • Panza, M.; Pistorio, S. G.; Stine, K. J.; Demchenko, A. V. Automated Chemical Oligosaccharide Synthesis: Novel Approach to Traditional Challenges. Chemical reviews 2018, 118, 8105–8150. doi:10.1021/acs.chemrev.8b00051
  • Pardo-Vargas, A.; Delbianco, M.; Seeberger, P. H. Automated glycan assembly as an enabling technology. Current opinion in chemical biology 2018, 46, 48–55. doi:10.1016/j.cbpa.2018.04.007
  • Xu, F.-F.; Pereira, C. L.; Seeberger, P. H. 1,3-Dibromo-5,5-dimethylhydantoin as promoter for glycosylations using thioglycosides. Beilstein journal of organic chemistry 2017, 13, 1994–1998. doi:10.3762/bjoc.13.195
  • Sprenger, G. A.; Baumgärtner, F.; Albermann, C. Production of human milk oligosaccharides by enzymatic and whole-cell microbial biotransformations. Journal of biotechnology 2017, 258, 79–91. doi:10.1016/j.jbiotec.2017.07.030
  • Wang, J.; Liu, R.; Yang, Y. Rapid and efficient conversion of sialyl thioglycosides to sialyl esters via NIS/BF3OEt2-promoted glycosylation. Tetrahedron Letters 2017, 58, 2370–2373. doi:10.1016/j.tetlet.2017.05.011
  • Broecker, F.; Seeberger, P. H. Synthetic Glycan Microarrays. Methods in molecular biology (Clifton, N.J.) 2016, 1518, 227–240. doi:10.1007/978-1-4939-6584-7_15
  • Schumann, B.; Parameswarappa, S. G.; Lisboa, M. P.; Kottari, N.; Guidetti, F.; Pereira, C. L.; Seeberger, P. H. Nucleophil-dirigierte Stereokontrolle über Glykosylierungsreaktionen durch geminal-difluorierte Nucleophile. Angewandte Chemie 2016, 128, 14644–14648. doi:10.1002/ange.201606774
Other Beilstein-Institut Open Science Activities