Glycodendrimers: tools to explore multivalent galectin-1 interactions

Jonathan M. Cousin and Mary J. Cloninger
Beilstein J. Org. Chem. 2015, 11, 739–747. https://doi.org/10.3762/bjoc.11.84

Supporting Information

Supporting Information File 1: Experimental procedures, fluorescent micrographs of fluorescent standards and calibration curve, and statistical analysis of fluorescent microscopy results.
Format: PDF Size: 1.0 MB Download

Cite the Following Article

Glycodendrimers: tools to explore multivalent galectin-1 interactions
Jonathan M. Cousin and Mary J. Cloninger
Beilstein J. Org. Chem. 2015, 11, 739–747. https://doi.org/10.3762/bjoc.11.84

How to Cite

Cousin, J. M.; Cloninger, M. J. Beilstein J. Org. Chem. 2015, 11, 739–747. doi:10.3762/bjoc.11.84

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Müllerová, M.; Hovorková, M.; Závodná, T.; Červenková Št Astná, L.; Krupková, A.; Hamala, V.; Nováková, K.; Topinka, J.; Bojarová, P.; Strašák, T. Lactose-Functionalized Carbosilane Glycodendrimers Are Highly Potent Multivalent Ligands for Galectin-9 Binding: Increased Glycan Affinity to Galectins Correlates with Aggregation Behavior. Biomacromolecules 2023, 24, 4705–4717. doi:10.1021/acs.biomac.3c00426
  • Martínez-Bailén, M.; Rojo, J.; Ramos-Soriano, J. Multivalent glycosystems for human lectins. Chemical Society reviews 2023, 52, 536–572. doi:10.1039/d2cs00736c
  • Ou, C.; Li, C.; Feng, C.; Tong, X.; Vasta, G. R.; Wang, L.-X. Synthesis, binding affinity, and inhibitory capacity of cyclodextrin-based multivalent glycan ligands for human galectin-3. Bioorganic & medicinal chemistry 2022, 72, 116974. doi:10.1016/j.bmc.2022.116974
  • Kurbangalieva, A.; Zamalieva, R.; Nasibullin, I.; Yamada, K.; Tanaka, K. Homo- and Heterogeneous Glycoconjugates on the Basis of N-Glycans and Human Serum Albumin: Synthesis and Biological Evaluation. Molecules (Basel, Switzerland) 2022, 27, 1285. doi:10.3390/molecules27041285
  • VanKoten, H. W.; Moore, R. S.; Cloninger, M. J. Nanoparticles To Study Lectins in Caenorhabditis elegans: Multivalent Galactose β1-4 Fucose-Functionalized Dendrimers Provide Protection from Oxidative Stress. Biomacromolecules 2021, 22, 4720–4729. doi:10.1021/acs.biomac.1c01001
  • Sorroza-Martínez, K.; Ruiu, A.; González-Méndez, I.; Rivera, E. Design and properties of dendrimers for pharmaceutical applications. Dendrimer-Based Nanotherapeutics; Elsevier, 2021; pp 15–31. doi:10.1016/b978-0-12-821250-9.00002-0
  • Belkhadem, K.; Cao, Y.; Roy, R. Synthesis of Galectin Inhibitors by Regioselective 3′-O-Sulfation of Vanillin Lactosides Obtained under Phase Transfer Catalysis. Molecules (Basel, Switzerland) 2020, 26, 115. doi:10.3390/molecules26010115
  • Bernhard, S. P.; Fricke, M. S.; Haag, R.; Cloninger, M. J. Protein aggregation nucleated by functionalized dendritic polyglycerols. Polymer chemistry 2020, 11, 3849–3862. doi:10.1039/d0py00667j
  • Dias, A. P. V.; da Silva Santos, S.; Da Silva, J. V.; Parise-Filho, R.; Ferreira, E. I.; Seoud, O. A. E.; Giarolla, J. Dendrimers in the context of nanomedicine. International journal of pharmaceutics 2019, 573, 118814. doi:10.1016/j.ijpharm.2019.118814
  • Liu, Q.; Aouidat, F.; Sacco, P.; Marsich, E.; Djaker, N.; Spadavecchia, J. Galectin-1 protein modified gold (III)-PEGylated complex-nanoparticles: Proof of concept of alternative probe in colorimetric glucose detection. Colloids and surfaces. B, Biointerfaces 2019, 185, 110588. doi:10.1016/j.colsurfb.2019.110588
  • Ogura, A.; Tanaka, K. Next-generation glycocluster for achieving pattern recognition in living system. Journal of Synthetic Organic Chemistry, Japan 2019, 77, 163–172. doi:10.5059/yukigoseikyokaishi.77.163
  • Tomich, J. M.; Wessel, E. M.; Choi, J.; Avila, L. A. Nonviral Gene Therapy: Peptiplexes. Nucleic Acid Nanotheranostics; Elsevier, 2019; pp 247–276. doi:10.1016/b978-0-12-814470-1.00008-3
  • Laaf, D.; Bojarová, P.; Elling, L.; Křen, V. Galectin-Carbohydrate Interactions in Biomedicine and Biotechnology. Trends in biotechnology 2018, 37, 402–415. doi:10.1016/j.tibtech.2018.10.001
  • Ogura, A.; Urano, S.; Tahara, T.; Nozaki, S.; Sibgatullina, R.; Vong, K.; Suzuki, T.; Dohmae, N.; Kurbangalieva, A.; Watanabe, Y.; Tanaka, K. A viable strategy for screening the effects of glycan heterogeneity on target organ adhesion and biodistribution in live mice. Chemical communications (Cambridge, England) 2018, 54, 8693–8696. doi:10.1039/c8cc01544a
  • St-Pierre, Y.; Doucet, N.; Chatenet, D. A New Approach to Inhibit Prototypic Galectins. Trends in Glycoscience and Glycotechnology 2018, 30, SE155–SE165. doi:10.4052/tigg.1730.1se
  • Monteiro, J. T.; Lepenies, B. Multivalency; Wiley, 2017; pp 325–344. doi:10.1002/9781119143505.ch13
  • Stel, M.; Pieters, R. J. Multivalency; Wiley, 2017; pp 345–380. doi:10.1002/9781119143505.ch14
  • Kesharwani, P.; Gothwal, A.; Iyer, A. K.; Jain, K.; Chourasia, M. K.; Gupta, U. Dendrimer nanohybrid carrier systems: an expanding horizon for targeted drug and gene delivery. Drug discovery today 2017, 23, 300–314. doi:10.1016/j.drudis.2017.06.009
  • Bertleff-Zieschang, N.; Bechold, J.; Grimm, C.; Reutlinger, M.; Schneider, P.; Schneider, G.; Seibel, J. Exploring the Structural Space of the Galectin‐1–Ligand Interaction. Chembiochem : a European journal of chemical biology 2017, 18, 1477–1481. doi:10.1002/cbic.201700251
  • Besford, Q. A.; Wojnilowicz, M.; Suma, T.; Bertleff-Zieschang, N.; Caruso, F.; Cavalieri, F. Lactosylated Glycogen Nanoparticles for Targeting Prostate Cancer Cells. ACS applied materials & interfaces 2017, 9, 16869–16879. doi:10.1021/acsami.7b02676
Other Beilstein-Institut Open Science Activities