Supporting Information
Supporting Information File 1: Experimental section. | ||
Format: PDF | Size: 739.7 KB | Download |
Cite the Following Article
An improved procedure for the preparation of Ru(bpz)3(PF6)2 via a high-yielding synthesis of 2,2’-bipyrazine
Danielle M. Schultz, James W. Sawicki and Tehshik P. Yoon
Beilstein J. Org. Chem. 2015, 11, 61–65.
https://doi.org/10.3762/bjoc.11.9
How to Cite
Schultz, D. M.; Sawicki, J. W.; Yoon, T. P. Beilstein J. Org. Chem. 2015, 11, 61–65. doi:10.3762/bjoc.11.9
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Glaser, F.; De Kreijger, S.; Achilleos, K.; Satheesh, L. N.; Ripak, A.; Chantry, N.; Bourgois, C.; Quiquempoix, S.; Scriven, J.; Rubens, J.; Vander Wee‐Léonard, M.; Daenen, M.; Gillard, M.; Elias, B.; Troian‐Gautier, L. A Compendium of Methodically Determined Ground‐ and Excited‐State Properties of Homoleptic Ruthenium(II) and Osmium(II) Photosensitizers. ChemPhotoChem 2024. doi:10.1002/cptc.202400134
- Robinette, F. N.; Valentine, N. P.; Sehler, K. M.; Medeck, A. M.; Reynolds, K. E.; Lane, S. N.; Price, A. N.; Cavanaugh, I. G.; Shell, S. M.; Ashford, D. L. Modulating Excited State Properties and Ligand Ejection Kinetics in Ruthenium Polypyridyl Complexes Designed to Mimic Photochemotherapeutics. Inorganic chemistry 2024, 63, 8426–8439. doi:10.1021/acs.inorgchem.4c00922
- Förster, C.; Heinze, K. Bimolecular reactivity of 3d metal-centered excited states (Cr, Mn, Fe, Co). Chemical Physics Reviews 2022, 3. doi:10.1063/5.0112531
- Taylor, D.; Malcomson, T.; Zhakeyev, A.; Cheng, S.; Rosair, G. M.; Marques-Hueso, J.; Xu, Z.; Paterson, M. J.; Dalgarno, S. J.; Vilela, F. 4,7-Diarylbenzo[c][1,2,5]thiadiazoles as fluorophores and visible light organophotocatalysts. Organic Chemistry Frontiers 2022, 9, 5473–5484. doi:10.1039/d2qo01316a
- Sullivan, C.; Zhang, Y.; Xu, G.; Christianson, L.; Luengo, F.; Halkoski, T.; Gao, P. Cyrene™ blends: a greener solvent system for organic syntheses. Green Chemistry 2022, 24, 7184–7193. doi:10.1039/d2gc01911f
- Sittel, S.; Naumann, R.; Heinze, K. Molecular Rubies in Photoredox Catalysis. Frontiers in chemistry 2022, 10, 887439. doi:10.3389/fchem.2022.887439
- Ding, Y.; Zhang, R.; Ma, R.; Ma, Y. Iodine-Catalyzed Double [4+2] Oxidative Annulations for the Synthesis of Bipyrazines from Ketones and Diamines by a Domino Strategy. Advanced Synthesis & Catalysis 2021, 364, 355–361. doi:10.1002/adsc.202100991
- Yang, N.; Fang, Y.; Xu, F.; Zhou, R.; Jin, X.; Zhang, L.; Shi, J.; Fang, J.; Wu, H.; Zongyong, Z. Application of the stabilization effect of a silyl group in radical-polar crossover reactions enabled by photoredox-neutral catalysis. Organic Chemistry Frontiers 2021, 8, 5303–5309. doi:10.1039/d1qo00738f
- Bell, J. D.; Murphy, J. A. Recent advances in visible light-activated radical coupling reactions triggered by (i) ruthenium, (ii) iridium and (iii) organic photoredox agents. Chemical Society reviews 2021, 50, 9540–9685. doi:10.1039/d1cs00311a
- Liu, Y.; Luo, W.; Xia, T.; Fang, Y.; Du, C.; Jin, X.; Li, Y.; Zhang, L.; Lei, W.; Wu, H. Merging radical-polar crossover/cycloisomerization processes: access to polyfunctional furans enabled by metallaphotoredox catalysis. Organic Chemistry Frontiers 2021, 8, 1732–1738. doi:10.1039/d0qo01472a
- Rubtsov, A. E.; Malkov, A. V. Recent Advances in the Synthesis of 2,2′-Bipyridines and Their Derivatives. Synthesis 2021, 53, 2559–2569. doi:10.1055/s-0040-1706030
- Murata, K.; Numasawa, N.; Shimomaki, K.; Takaya, J.; Iwasawa, N. Improved Conditions for the Visible-Light Driven Hydrocarboxylation by Rh(I) and Photoredox Dual Catalysts Based on the Mechanistic Analyses. Frontiers in chemistry 2019, 7, 371. doi:10.3389/fchem.2019.00371
- Shida, N.; Imada, Y.; Nagahara, S.; Okada, Y.; Chiba, K. Interplay of arene radical cations with anions and fluorinated alcohols in hole catalysis. Communications Chemistry 2019, 2, 1–8. doi:10.1038/s42004-019-0125-4
- Komreddy, V. R.; Rillema, D. P.; Nguyen, H.; Kadel, L. R. Synthesis and Characterization of 2‐(2‐Pyridinyl)pyrazine and 2,2′‐Bipyrazine Derivatives. Journal of Heterocyclic Chemistry 2019, 56, 972–979. doi:10.1002/jhet.3479
- Le, C. C.; Chen, T.; Liang, T.; Zhang, P.; MacMillan, D. W. C. A radical approach to the copper oxidative addition problem: Trifluoromethylation of bromoarenes. Science (New York, N.Y.) 2018, 360, 1010–1014. doi:10.1126/science.aat4133
- Wang, J.; Zhao, Y.; Gao, H.; Gao, G.-L.; Yang, C.; Xia, W. Visible-Light-Mediated Dehydrogenative Cross-Coupling: Synthesis of Nonsymmetrical Atropisomeric Biaryls. Asian Journal of Organic Chemistry 2017, 6, 1402–1407. doi:10.1002/ajoc.201700242
- Lies, S. D.; Lin, S.; Yoon, T. P. Organic Syntheses - Visible Light Photocatalysis of Radical Cation Diels–Alder Cycloadditions: Preparation of Tris(2,2’‐bipyrazyl) Ruthenium(II) Bis(tetrakis(3,5‐bis(trifluoromethyl)phenyl)borate). Organic Syntheses 2017, 93, 178–199. doi:10.1002/0471264229.os093.14
- Li, H.; Oppenheimer, J.; Smith, M. R.; Maleczka, R. E. Improved synthesis of electron deficient bipyridines. Tetrahedron Letters 2016, 57, 2231–2232. doi:10.1016/j.tetlet.2016.04.023
- Schultz, D. M.; Sawicki, J. W.; Yoon, T. P. An Improved Procedure for the Preparation of Ru(bpz)3(PF6)2 via a High‐Yielding Synthesis of 2,2′‐Bipyrazine. ChemInform 2015, 46. doi:10.1002/chin.201521195