Supporting Information
| Supporting Information File 1: Experimental part and additional spectra of investigated compounds. | ||
| Format: PDF | Size: 3.2 MB | Download |
Cite the Following Article
The role of alkyl substituents in deazaadenine-based diarylethene photoswitches
Christopher Sarter, Michael Heimes and Andres Jäschke
Beilstein J. Org. Chem. 2016, 12, 1103–1110.
https://doi.org/10.3762/bjoc.12.106
How to Cite
Sarter, C.; Heimes, M.; Jäschke, A. Beilstein J. Org. Chem. 2016, 12, 1103–1110. doi:10.3762/bjoc.12.106
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Presentation Graphic
| Picture with graphical abstract, title and authors for social media postings and presentations. | ||
| Format: PNG | Size: 588.3 KB | Download |
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Wang, J.; Wang, W.; Ma, P.; Liu, G.; Gao, Z.; Wu, H.; Wu, B.; He, B.; Schenk, G. Boosting amidation of Ortho-substituted anilines with esters or acids via hinge and tunnel engineering of lipase. Chemical Engineering Journal 2025, 519, 165291. doi:10.1016/j.cej.2025.165291
- Bargstedt, J.; Reinschmidt, M.; Tydecks, L.; Kolmar, T.; Hendrich, C. M.; Jäschke, A. Photochromic Nucleosides and Oligonucleotides. Angewandte Chemie 2023, 136. doi:10.1002/ange.202310797
- Bargstedt, J.; Reinschmidt, M.; Tydecks, L.; Kolmar, T.; Hendrich, C. M.; Jäschke, A. Photochromic Nucleosides and Oligonucleotides. Angewandte Chemie (International ed. in English) 2023, 63, e202310797. doi:10.1002/anie.202310797
- Maafi, M. On photokinetics under monochromatic light. Frontiers in chemistry 2023, 11, 1233151. doi:10.3389/fchem.2023.1233151
- Semionova, V. V.; Glebov, E. M. SUPRAMOLECULAR COMPOUNDS FORMED BY METAL-ORGANIC FRAMEWORKS AND ORGANIC PHOTOCHROMES. REVIEW. Journal of Structural Chemistry 2022, 63, 1453–1483. doi:10.1134/s0022476622090086
- Wagenknecht, H. doi:10.1002/9783527827626.ch39
- Orlioglo, B. M.; Kovalenko, K. A.; Glebov, E. M. INCLUSION COMPOUNDS OF ORGANIC AZOCHROMOPHORES IN THE CAVITIES OF METAL-ORGANIC FRAMEWORKS (Cr, Al)– MIL-101: SYNTHESIS AND PHOTOCHEMICAL STUDIES. Journal of Structural Chemistry 2022, 63, 152–163. doi:10.1134/s0022476622010152
- Büllmann, S. M.; Kolmar, T.; Zorn, N. F.; Zaumseil, J.; Jäschke, A. Ein DNA‐basierter exzitonischer Zweikomponenten‐Schalter auf der Grundlage von Hochleistungs‐Diarylethenen. Angewandte Chemie 2022, 134. doi:10.1002/ange.202117735
- Büllmann, S. M.; Kolmar, T.; Zorn, N. F.; Zaumseil, J.; Jäschke, A. A DNA-Based Two-Component Excitonic Switch Utilizing High-Performance Diarylethenes. Angewandte Chemie (International ed. in English) 2022, 61, e202117735. doi:10.1002/anie.202117735
- Maafi, M.; Alqarni, M. Mono- and polychromatic light diarylethene-actinometer for the visible range. Dyes and Pigments 2022, 198, 109942. doi:10.1016/j.dyepig.2021.109942
- Kolmar, T.; Becker, A.; Pfretzschner, R. A.; Lelke, A.; Jäschke, A. Development of Red-Shifted and Fluorogenic Nucleoside and Oligonucleotide Diarylethene Photoswitches. Chemistry (Weinheim an der Bergstrasse, Germany) 2021, 27, 17386–17394. doi:10.1002/chem.202103133
- Büllmann, S. M.; Kolmar, T.; Slawetzky, P.; Wald, S.; Jäschke, A. Optochemical control of transcription by the use of 7-deaza-adenosine-based diarylethenes. Chemical communications (Cambridge, England) 2021, 57, 6596–6599. doi:10.1039/d1cc02639a
- Kolmar, T.; Büllmann, S. M.; Sarter, C.; Höfer, K.; Jäschke, A. Development of High‐Performance Pyrimidine Nucleoside and Oligonucleotide Diarylethene Photoswitches. Angewandte Chemie (International ed. in English) 2021, 60, 8164–8173. doi:10.1002/anie.202014878
- Kolmar, T.; Büllmann, S. M.; Sarter, C.; Höfer, K.; Jäschke, A. Development of High‐Performance Pyrimidine Nucleoside and Oligonucleotide Diarylethene Photoswitches. Angewandte Chemie 2021, 133, 8245–8254. doi:10.1002/ange.202014878
- Lvov, A. G. Switching the Mallory Reaction to Synthesis of Naphthalenes, Benzannulated Heterocycles, and Their Derivatives. The Journal of organic chemistry 2020, 85, 8749–8759. doi:10.1021/acs.joc.0c00924
- Zhang, J.; Zhou, Y.; Yao, Y.; Cheng, Z.; Gao, T.; Li, H.; Yan, P. A light triggered optical and chiroptical switch based on a homochiral Eu2L3 helicate. Journal of Materials Chemistry C 2020, 8, 6788–6796. doi:10.1039/d0tc01044h
- Oplachko, M. V.; Smolentsev, A. B.; Magin, I. M.; Pozdnyakov, I. P.; Nichiporenko, V. A.; Grivin, V. P.; Plyusnin, V. F.; Vyazovkin, V. V.; Yanshole, V. V.; Parkhats, M. V.; Yadykov, A. V.; Shirinian, V. Z.; Glebov, E. M. Mechanism of photochromic transformations and photodegradation of an asymmetrical 2,3-diarylcyclopentenone. Physical chemistry chemical physics : PCCP 2020, 22, 5220–5228. doi:10.1039/c9cp05744g
- Sarter, C.; Dey, S.; Jäschke, A. Photoswitchable Oligonucleotides Containing Different Diarylethene-Modified Nucleotides. ACS omega 2019, 4, 12125–12129. doi:10.1021/acsomega.9b01070
- Kellis, D. L.; Sarter, C.; Cannon, B. L.; Davis, P. H.; Graugnard, E.; Lee, J.; Pensack, R. D.; Kolmar, T.; Jäschke, A.; Yurke, B.; Knowlton, W. B. An All-Optical Excitonic Switch Operated in the Liquid and Solid Phases. ACS nano 2019, 13, 2986–2994. doi:10.1021/acsnano.8b07504
- Huang, X.-Q.; Fan, C.-B.; Liu, G.; Pu, S.-Z. Synthesis and the effect of alkyl chain length on photochromic properties of diarylethene derivatives. Tetrahedron 2019, 75, 784–790. doi:10.1016/j.tet.2018.12.063