Synthesis of a deuterated probe for the confocal Raman microscopy imaging of squalenoyl nanomedicines

Eric Buchy, Branko Vukosavljevic, Maike Windbergs, Dunja Sobot, Camille Dejean, Simona Mura, Patrick Couvreur and Didier Desmaële
Beilstein J. Org. Chem. 2016, 12, 1127–1135. https://doi.org/10.3762/bjoc.12.109

Supporting Information

Supporting Information File 1: Experimental procedures and 1H and 13C NMR spectral data for compounds 1, 3, 11, 25, 27, 28.
Format: PDF Size: 1.5 MB Download

Cite the Following Article

Synthesis of a deuterated probe for the confocal Raman microscopy imaging of squalenoyl nanomedicines
Eric Buchy, Branko Vukosavljevic, Maike Windbergs, Dunja Sobot, Camille Dejean, Simona Mura, Patrick Couvreur and Didier Desmaële
Beilstein J. Org. Chem. 2016, 12, 1127–1135. https://doi.org/10.3762/bjoc.12.109

How to Cite

Buchy, E.; Vukosavljevic, B.; Windbergs, M.; Sobot, D.; Dejean, C.; Mura, S.; Couvreur, P.; Desmaële, D. Beilstein J. Org. Chem. 2016, 12, 1127–1135. doi:10.3762/bjoc.12.109

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 535.5 KB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Kukal, G.; Vasdekis, A. E.; McDonald, A. G. Raman-probes for monitoring metabolites and nutrient fate in Yarrowia lipolytica using deuterated glucose. Biocatalysis and Agricultural Biotechnology 2022, 39, 102241. doi:10.1016/j.bcab.2021.102241
  • Steven, C. F.; Chiarparin, E.; Hulme, A. N.; Brunton, V. G. Use of SRS microscopy for imaging drugs. Stimulated Raman Scattering Microscopy; Elsevier, 2022; pp 403–419. doi:10.1016/b978-0-323-85158-9.00030-0
  • von Domaros, M.; Liu, Y.; Butman, J. L.; Perlt, E.; Geiger, F. M.; Tobias, D. J. Molecular Orientation at the Squalene/Air Interface from Sum Frequency Generation Spectroscopy and Atomistic Modeling. The journal of physical chemistry. B 2021, 125, 3932–3941. doi:10.1021/acs.jpcb.0c11158
  • Ghavre, M. Bamford‐Stevens and Shapiro Reactions in Organic Synthesis. Asian Journal of Organic Chemistry 2020, 9, 1901–1923. doi:10.1002/ajoc.202000336
  • Mura, S.; Fattal, E.; Nicolas, J. From poly(alkyl cyanoacrylate) to squalene as core material for the design of nanomedicines. Journal of drug targeting 2019, 27, 470–501. doi:10.1080/1061186x.2019.1579822
  • Lewis, D. E. Deoxygenation in modern synthesis. The Wolff-Kishner Reduction and Related Reactions; Elsevier, 2019; pp 191–217. doi:10.1016/b978-0-12-815727-5.00007-7
  • Philippe, N.; Luc, R.; De Bruin, B.; Schofield, J.; Roy, S. Two new convenient syntheses of 14C‐squalene from turbinaric acid. Journal of labelled compounds & radiopharmaceuticals 2018, 61, 878–884. doi:10.1002/jlcr.3672
  • Sobot, D.; Mura, S.; Rouquette, M.; Vukosavljevic, B.; Cayre, F.; Buchy, E.; Pieters, G.; Garcia-Argote, S.; Windbergs, M.; Desmaële, D.; Couvreur, P. Circulating Lipoproteins: A Trojan Horse Guiding Squalenoylated Drugs to LDL-Accumulating Cancer Cells. Molecular therapy : the journal of the American Society of Gene Therapy 2017, 25, 1596–1605. doi:10.1016/j.ymthe.2017.05.016
Other Beilstein-Institut Open Science Activities