Cyclisation mechanisms in the biosynthesis of ribosomally synthesised and post-translationally modified peptides

Andrew W. Truman
Beilstein J. Org. Chem. 2016, 12, 1250–1268. https://doi.org/10.3762/bjoc.12.120

Cite the Following Article

Cyclisation mechanisms in the biosynthesis of ribosomally synthesised and post-translationally modified peptides
Andrew W. Truman
Beilstein J. Org. Chem. 2016, 12, 1250–1268. https://doi.org/10.3762/bjoc.12.120

How to Cite

Truman, A. W. Beilstein J. Org. Chem. 2016, 12, 1250–1268. doi:10.3762/bjoc.12.120

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 570.2 KB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Wang, M.; Wu, M.; Han, M.; Niu, X.; Fan, A.; Zhu, S.; Tong, Y. Mining the Biosynthetic Landscape of Lactic Acid Bacteria Unearths a New Family of RiPPs Assembled by a Novel Type of ThiF-like Adenylyltransferases. ACS omega 2024, 9, 30891–30903. doi:10.1021/acsomega.4c03760
  • Wang, M.; Wu, M.; Han, M.; Niu, X.; Fan, A.; Zhu, S.; Tong, Y. Mining the biosynthetic landscape of lactic acid bacteria unearths a new family of RiPPs assembled by a novel type of ThiF-like adenylyltransferases. Cold Spring Harbor Laboratory 2024. doi:10.1101/2024.05.13.593846
  • Matabaro, E.; Witte, L.; Gherlone, F.; Vogt, E.; Kaspar, H.; Künzler, M. Promiscuity of Omphalotin A Biosynthetic Enzymes Allows de novo Production of Non-Natural Multiply Backbone N-Methylated Peptide Macrocycles in Yeast. Chembiochem : a European journal of chemical biology 2024, 25, e202300626. doi:10.1002/cbic.202300626
  • Sarksian, R.; Zhu, L.; van der Donk, W. A. syn-Elimination of glutamylated threonine in lanthipeptide biosynthesis. Chemical communications (Cambridge, England) 2023, 59, 1165–1168. doi:10.1039/d2cc06345j
  • He, Y.; Fan, A.; Han, M.; Li, H.; Li, M.; Fan, H.; An, X.; Song, L.; Zhu, S.; Tong, Y. Mammalian Commensal Streptococci Utilize a Rare Family of Class VI Lanthipeptide Synthetases to Synthesize Miniature Lanthipeptide-type Ribosomal Peptide Natural Products. Biochemistry 2022, 62, 462–475. doi:10.1021/acs.biochem.2c00534
  • Wang, L.; Fan, R.; Li, Z.; Wang, L.; Bai, X.; Bu, T.; Dong, Y.; Xu, Y.; Quan, C. Insights into the structure and function of the histidine kinase ComP from Bacillus amyloliquefaciens based on molecular modeling. Bioscience reports 2022, 42. doi:10.1042/bsr20220352
  • Zheng, Y.; Nair, S. K. YcaO-mediated ATP-dependent peptidase activity in ribosomal peptide biosynthesis. Nature chemical biology 2022, 19, 111–119. doi:10.1038/s41589-022-01141-0
  • Lee, H.; van der Donk, W. A. Macrocyclization and Backbone Modification in RiPP Biosynthesis. Annual review of biochemistry 2022, 91, 269–294. doi:10.1146/annurev-biochem-032620-104956
  • Wenski, S. L.; Thiengmag, S.; Helfrich, E. J. N. Complex peptide natural products: Biosynthetic principles, challenges and opportunities for pathway engineering. Synthetic and systems biotechnology 2022, 7, 631–647. doi:10.1016/j.synbio.2022.01.007
  • Li, G.; Patel, K.; Zhang, Y.; Pugmire, J. K.; Ding, Y.; Bruner, S. D. Structural and biochemical studies of an iterative ribosomal peptide macrocyclase. Proteins 2021, 90, 670–679. doi:10.1002/prot.26264
  • Wang, M.; Fage, C. D.; He, Y.; Mi, J.; Yang, Y.; Li, F.; An, X.; Fan, H.; Song, L.; Zhu, S.; Tong, Y. Recent Advances and Perspectives on Expanding the Chemical Diversity of Lasso Peptides. Frontiers in bioengineering and biotechnology 2021, 9, 741364. doi:10.3389/fbioe.2021.741364
  • Russell, A. H.; Vior, N. M.; Hems, E. S.; Lacret, R.; Truman, A. W. Discovery and characterisation of an amidine-containing ribosomally-synthesised peptide that is widely distributed in nature. Chemical science 2021, 12, 11769–11778. doi:10.1039/d1sc01456k
  • Patel, K.; Silsby, L. M.; Li, G.; Bruner, S. D. Structure-Based Engineering of Peptide Macrocyclases for the Chemoenzymatic Synthesis of Microviridins. The Journal of organic chemistry 2021, 86, 11212–11219. doi:10.1021/acs.joc.1c00785
  • Liu, D.; Rubin, G. M.; Dhakal, D.; Chen, M.; Ding, Y. Biocatalytic synthesis of peptidic natural products and related analogues. iScience 2021, 24, 102512. doi:10.1016/j.isci.2021.102512
  • Lu, J.; Wu, Y.; Li, Y.; Wang, H. The Utilization of Lanthipeptide Synthetases Is a General Strategy for the Biosynthesis of 2‐Aminovinyl‐Cysteine Motifs in Thioamitides**. Angewandte Chemie 2020, 133, 1979–1986.
  • Lu, J.; Wu, Y.; Li, Y.; Wang, H. The Utilization of Lanthipeptide Synthetases Is a General Strategy for the Biosynthesis of 2-Aminovinyl-Cysteine Motifs in Thioamitides*. Angewandte Chemie (International ed. in English) 2020, 60, 1951–1958. doi:10.1002/anie.202012871
  • Lu, J.; Wu, Y.; Li, Y.; Wang, H. The Utilization of Lanthipeptide Synthetases Is a General Strategy for the Biosynthesis of 2‐Aminovinyl‐Cysteine Motifs in Thioamitides**. Angewandte Chemie 2020, 133, 1979–1986. doi:10.1002/ange.202012871
  • Rubin, G. M.; Ding, Y. Recent advances in the biosynthesis of RiPPs from multicore-containing precursor peptides. Journal of industrial microbiology & biotechnology 2020, 47, 659–674. doi:10.1007/s10295-020-02289-1
  • Ma, S.; Zhang, Q. Linaridin natural products. Natural product reports 2020, 37, 1152–1163. doi:10.1039/c9np00074g
  • Lu, J.; Wu, Y.; Li, J.; Li, Y.; Zhang, Y.; Bai, Z.; Zheng, J.; Zhu, J.; Wang, H. Lanthipeptide Synthetases Participate the Biosynthesis of 2-Aminovinyl-Cysteine Motifs in Thioamitides. Cold Spring Harbor Laboratory 2020. doi:10.1101/2020.08.21.260323

Patents

  • WALTON JONATHAN; SGAMBELLURI R. TRYPTATHIONINE BIOSYNTHESIS BY FLAVIN MONO-OXYGENASE 1 (FMO1). WO 2018201050 A1, Nov 1, 2018.
Other Beilstein-Institut Open Science Activities