Supporting Information
Supporting Information File 1: Experimental. | ||
Format: PDF | Size: 371.3 KB | Download |
Cite the Following Article
A flow reactor setup for photochemistry of biphasic gas/liquid reactions
Josef Schachtner, Patrick Bayer and Axel Jacobi von Wangelin
Beilstein J. Org. Chem. 2016, 12, 1798–1811.
https://doi.org/10.3762/bjoc.12.170
How to Cite
Schachtner, J.; Bayer, P.; Jacobi von Wangelin, A. Beilstein J. Org. Chem. 2016, 12, 1798–1811. doi:10.3762/bjoc.12.170
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Presentation Graphic
Picture with graphical abstract, title and authors for social media postings and presentations. | ||
Format: PNG | Size: 1.4 MB | Download |
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Liu, P.; Zhu, W.; Zhao, F. Modeling and experimental study on a photochemical microscale continuous oscillatory baffled reactor. AIChE Journal 2024, 70. doi:10.1002/aic.18553
- Lancel, M.; Golisano, T.; Monnereau, C.; Gomez, C.; Port, M.; Amara, Z. Sustainable Photooxidation using a Subpart-per-million Heavy-Metal-Free Red-Light Photocatalyst. ACS Sustainable Chemistry & Engineering 2023, 11, 15674–15684. doi:10.1021/acssuschemeng.3c04688
- Hahn, M. D.; Carvalho, P. S.; Cruz, F. A. Connecting Arduino and Processing for an RGB LED exploration: a new approach for technology-enhanced learning. Physics Education 2023, 58, 65020–065020. doi:10.1088/1361-6552/acf829
- Pasha, M.; Wang, Y.; Liu, S.; Qian, G.; Xue, X.; Shang, M.; Su, Y. Efficient Scale-Up of a Solvent-Free Photooxidation Using a High-Power LED-Based Photomicroreactor. Industrial & Engineering Chemistry Research 2023, 62, 13811–13824. doi:10.1021/acs.iecr.3c01502
- Fernandes, E.; Mazierski, P.; Klimczuk, T.; Zaleska-Medynska, A.; Martins, R. C.; Gomes, J. g-C3N4 for Photocatalytic Degradation of Parabens: Precursors Influence, the Radiation Source and Simultaneous Ozonation Evaluation. Catalysts 2023, 13, 789. doi:10.3390/catal13050789
- Lancel, M.; Zimberlin, P.; Gomez, C.; Port, M.; Khrouz, L.; Monnereau, C.; Amara, Z. Self-Sensitized Photooxidation of Naphthols to Naphthoquinones and the Use of Naphthoquinones as Visible Light Photocatalysts in Batch and Continuous Flow Reactors. The Journal of organic chemistry 2023, 88, 6498–6508. doi:10.1021/acs.joc.2c03014
- Stuhr, R.; Bayer, P.; von Wangelin, A. J. The Diverse Modes of Oxygen Reactivity in Life & Chemistry. ChemSusChem 2022, 15, e202201323. doi:10.1002/cssc.202201323
- Fernandes, E.; Drosopoulou, S.; Mazierski, P.; Miodyńska, M.; Gołaszewska, D.; Zaleska-Medynska, A.; Martins, R. C.; Gomes, J. Carbon nitride photoactivation evaluation and degradation of a mixture of parabens by ozone assistance. Journal of Water Process Engineering 2022, 49, 103018. doi:10.1016/j.jwpe.2022.103018
- Lancel, M.; Gomez, C.; Port, M.; Amara, Z. Performances of Homogeneous and Heterogenized Methylene Blue on Silica Under Red Light in Batch and Continuous Flow Photochemical Reactors. Frontiers in Chemical Engineering 2021, 3. doi:10.3389/fceng.2021.752364
- Asano, Y.; Ito, Y. Study on a Recirculation Microreactor System for Gas–Liquid Reactions. JOURNAL OF CHEMICAL ENGINEERING OF JAPAN 2021, 54, 541–548. doi:10.1252/jcej.21we055
- Hone, C. A.; Kappe, C. O. Towards the Standardization of Flow Chemistry Protocols for Organic Reactions. Chemistry–Methods 2021, 1, 454–467. doi:10.1002/cmtd.202100059
- Buglioni, L.; Raymenants, F.; Slattery, A.; Zondag, S. D. A.; Noël, T. Technological Innovations in Photochemistry for Organic Synthesis: Flow Chemistry, High-Throughput Experimentation, Scale-up, and Photoelectrochemistry. Chemical reviews 2021, 122, 2752–2906. doi:10.1021/acs.chemrev.1c00332
- Stuhr, R.; Bayer, P.; Stark, C. B. W.; von Wangelin, A. J. Light-Driven Waste-To-Value Upcycling: Bio-Based Polyols and Polyurethanes from the Photo-Oxygenation of Cardanols. ChemSusChem 2021, 14, 3325–3332. doi:10.1002/cssc.202101175
- Gambacorta, G.; Sharley, J. S.; Baxendale, I. R. A comprehensive review of flow chemistry techniques tailored to the flavours and fragrances industries. Beilstein journal of organic chemistry 2021, 17, 1181–1312. doi:10.3762/bjoc.17.90
- Bitaraf, M.; Amoozadeh, A. A novel sery of SO3H-functionalized heterostructure nano-semiconductors; an efficient strategy to prepare visible-light responsive photocatalysts. Research on Chemical Intermediates 2021, 47, 3329–3347. doi:10.1007/s11164-021-04458-y
- Patel, R. I.; Sharma, A.; Sharma, S.; Sharma, A. Visible light-mediated applications of methylene blue in organic synthesis. Organic Chemistry Frontiers 2021, 8, 1694–1718. doi:10.1039/d0qo01182g
- Rehm, T. H. Flow Photochemistry as a Tool in Organic Synthesis. Chemistry (Weinheim an der Bergstrasse, Germany) 2020, 26, 16952–16974. doi:10.1002/chem.202000381
- Malakar, P.; Deb, A. R.; Goodine, T.; Robertson, M. J.; Oelgemöller, M. CHAPTER 7:Continuous-flow Photooxygenations: An Advantageous and Sustainable Oxidation Methodology with a Bright Future. Catalytic Aerobic Oxidations; The Royal Society of Chemistry, 2020; pp 181–251. doi:10.1039/9781839160332-00181
- Secci, F.; Porcu, S.; Luridiana, A.; Frongia, A.; Ricci, P. C. Visible light promoted continuous flow photocyclization of 1,2-diketones. Organic & biomolecular chemistry 2020, 18, 3684–3689. doi:10.1039/d0ob00532k
- Bayer, P.; von Wangelin, A. J. An entirely solvent-free photooxygenation of olefins under continuous flow conditions. Green Chemistry 2020, 22, 2359–2364. doi:10.1039/d0gc00436g