The in situ generation and reactive quench of diazonium compounds in the synthesis of azo compounds in microreactors

Faith M. Akwi and Paul Watts
Beilstein J. Org. Chem. 2016, 12, 1987–2004. https://doi.org/10.3762/bjoc.12.186

Supporting Information

Supporting Information File 1: Additional diagrams and NMR spectra.
Format: PDF Size: 567.7 KB Download

Cite the Following Article

The in situ generation and reactive quench of diazonium compounds in the synthesis of azo compounds in microreactors
Faith M. Akwi and Paul Watts
Beilstein J. Org. Chem. 2016, 12, 1987–2004. https://doi.org/10.3762/bjoc.12.186

How to Cite

Akwi, F. M.; Watts, P. Beilstein J. Org. Chem. 2016, 12, 1987–2004. doi:10.3762/bjoc.12.186

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 170.9 KB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Ouyang, J.; Yang, W.; Guo, Z.; Li, F.; Liu, W.; Guo, P.; Zhou, Y.; Gao, D.; Zhang, L.; Tao, S. Modular Cascade of Flow Reactors: Continuous Flow Synthesis of Water-Insoluble Diazo Dyes in Aqueous System. ChemSusChem 2024, 17, e202400413. doi:10.1002/cssc.202400413
  • Polterauer, D.; van Eeten, K. M. P.; Stam, W.; Hone, C. A.; Kappe, C. O. Dynamic Spinning Disc Reactor Technology to Enable In Situ Solid Product Formation in a Diazotization and Azo Coupling Sequence. Organic Process Research & Development 2024, 28, 1903–1909. doi:10.1021/acs.oprd.3c00448
  • Li, L.; Zhang, Q.; Bian, C.; Wei, W.; Sun, W.; Ji, L.; Wang, H.; Zhou, C.; Wang, K.; Gong, D.; Yan, D. Two-step Continuous-flow Synthesis of 1,2-dimethyl-3-methylsulfanylbenzene via Diazotization and Methanethiolation. Current Organic Chemistry 2024, 28, 222–229. doi:10.2174/0113852728277310240103111746
  • McCormack, A. T.; Stephens, J. C. The continuous flow synthesis of azos. Journal of flow chemistry 2024, 14, 377–396. doi:10.1007/s41981-024-00307-2
  • Kosar, N.; Kanwal, S.; Sajid, H.; Ayub, K.; Gilani, M. A.; Elfaki Ibrahim, K.; Gatasheh, M. K.; Mary, Y. S.; Mahmood, T. Frequency-dependent nonlinear optical response and refractive index investigation of lactone-derived thermochromic compounds. Journal of molecular graphics & modelling 2023, 126, 108646. doi:10.1016/j.jmgm.2023.108646
  • Mao, Y.; Zhou, C.; Wang, C.; Xin, Z. Continuous-flow synthesis and crystal modification of Pigment Red 53. Chinese Chemical Letters 2023, 34, 108061. doi:10.1016/j.cclet.2022.108061
  • Agarwal, S.; Dowara, B.; Kumar, S.; Kumar, V.; Deori, K. Magnetically Separable Visible Light-Active Ag0.75Ni0.25 Binary Alloy Nanoparticles as a Highly Efficient Photocatalyst for the Selective Oxidative Coupling of Aniline to Azobenzene. ACS omega 2022, 7, 48615–48622. doi:10.1021/acsomega.2c07441
  • Chen, J.; Xie, X.; Liu, J.; Yu, Z.; Su, W. Revisiting aromatic diazotization and aryl diazonium salts in continuous flow: highlighted research during 2001–2021. Reaction Chemistry & Engineering 2022, 7, 1247–1275. doi:10.1039/d2re00001f
  • Hussien, F. A.-H. An eco-friendly methodology for the synthesis of azocoumarin dye using cation exchange resins. Heliyon 2021, 7, e08439. doi:10.1016/j.heliyon.2021.e08439
  • Zhiping, S.; Wang, X.; Yin, D.; Li, W.; Liu, D.; Zhou, X. High-Flux Continuous-Flow Synthesis of C.I. Pigment Yellow 12 from Clear Alkaline Solutions of the Coupling Component. Organic Process Research & Development 2021, 26, 661–669. doi:10.1021/acs.oprd.1c00144
  • Al-Joboury, W. M. R.; Al-Badrany, K. A.; Asli, N. J. Synthesis of new azo dye compounds derived from 2-aminobenzothiazole and study their biological activity. Materials Today: Proceedings 2021, 47, 5977–5982. doi:10.1016/j.matpr.2021.04.538
  • Alhaj Hussien, F. An Eco-Friendly Approach for the Synthesis of Azocoumarin Dye Using Cation Exchange Resins. SSRN Electronic Journal 2021. doi:10.2139/ssrn.3896443
  • Patel, A. R.; Patel, G.; Maity, G.; Patel, S. P.; Bhattacharya, S.; Putta, A.; Banerjee, S. Direct Oxidative Azo Coupling of Anilines Using a Self-Assembled Flower-like CuCo2O4 Material as a Catalyst under Aerobic Conditions. ACS omega 2020, 5, 30416–30424. doi:10.1021/acsomega.0c03562
  • Estruch-Blasco, M.; Felipe-Blanco, D.; Bosque, I.; Gonzalez‐Gomez, J. C. Radical Arylation of Triphenyl Phosphite Catalyzed by Salicylic Acid: Mechanistic Investigations and Synthetic Applications. The Journal of organic chemistry 2020, 85, 14473–14485. doi:10.1021/acs.joc.0c00795
  • Qiu, J.; Tang, B.; Benzhi, J.; Zhang, S.; Jin, X. Clean synthesis of disperse azo dyes based on peculiar stable 2,6-dibromo-4-nitrophenyl diazonium sulfate. Dyes and Pigments 2020, 173, 107920. doi:10.1016/j.dyepig.2019.107920
  • Sharma, Y.; Nikam, A. V.; Kulkarni, A. A. Telescoped Sequence of Exothermic and Endothermic Reactions in Multistep Flow Synthesis. Organic Process Research & Development 2018, 23, 170–176. doi:10.1021/acs.oprd.8b00008
  • Akwi, F. M.; Watts, P. Continuous flow chemistry: where are we now? Recent applications, challenges and limitations. Chemical communications (Cambridge, England) 2018, 54, 13894–13928. doi:10.1039/c8cc07427e
  • Publisher's Note. Journal of Molecular Liquids 2018, 271, 136–137. doi:10.1016/j.molliq.2018.08.091
  • Harisha, S.; Keshavayya, J.; Swamy, B. K.; Prasanna, S.; Viswanath, C.; Ravi, B. Catalytic approach green synthesis, characterization and electrochemical studies of heterocyclic azo dye derived from 5-amino-1,3,4-thiadiazole-2-thiol. Journal of Molecular Liquids 2018, 271, 976–983. doi:10.1016/j.molliq.2018.10.156
  • Zhang, Y.; Liu, Y.; Ma, X.; Ma, X.; Wang, B.; Li, H.; Huang, Y.; Liu, C. An environmentally friendly approach to the green synthesis of azo dyes with aryltriazenes via ionic liquid promoted C-N bonds formation. Dyes and Pigments 2018, 158, 438–444. doi:10.1016/j.dyepig.2018.05.073
Other Beilstein-Institut Open Science Activities